Plenty works have been devoted to the study of compressive sensing over the past decades. Such a promising development of compressive sensing has a great impact on many aspects of signal and image processing. One of the key mathematical problems addressed in compressive sensing is how to reconstruct a sparse signal from linear/nonlinear measurements via a decoding algorithm. In the classic compressive sensing, it is well known that to exactly reconstruct the sparsest signal from a limited number of linear measurements is possible when the sensing matrix admits certain properties.