Research on “compressive sensing” (CS) has shown that it is possible to retrieve high-dimensional signals using a limited set of (often random) linear measurements. For CS to work properly, the signal to be retrieved must be sparse, which means that most of its components (e.g., 90 % of them) are zero. Many algorithms relying on CS can reliably recover sparse signals on the basis of a number of measurements that essentially scales with sparsity level (instead of scaling with the number of dimensions).