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Diffusion models : from DDPM to DALLE-2



o imegen3 — :
Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.

DALLE-2:

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula




DALLE mini ;

“a painting of a fox in the style
of starry night”

Painting of a man eating a banana

“a red cube on top

of a blue cube™

“a stained glass window
of a panda eating bamboo”
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N ? — Diffusion models

/7 N\

Type of generative model that has gain significant popularity recently

» GAN models : potentially unstable training and less Generative f,.fjf" “\ Denoising
H H H H H ini Adversarial -~ : "y Diffusion
diversity in generation due to adversarial training nature Networks Samples /) . Models

» VAE models : lower quality samples. In diffusion models,
the latent variable has high dimensionality (same as the
generated data)

Variational Autoencoders,
Normalizing Flows 4



Roadmap of the presentation

Denoising Diffusion Denoising Diffusion Implicit
Probabilistic models - DDPM models - DDIM Conditioning
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Practical Ablated Diffusion Text2image models
implementation Model - ADM




Denoising Diffusion Probabilistic Models
Jonathan Ho, Ajay Jain & Pieter Abbeel, 2020

Po\Xy 1|Xt
Markov chain @—> —>@—‘——“—> —>—>
Q(Xt‘|>_€t 1) .

<+<— Forward diffusion process : progressively add small amount of noise to the sample

— Reverse diffusion process : try to denoise the data and to reverse the forward process

Idea : if small amounts of Gaussian noise in forward

process, the sampling chain transitions can be set to . » -
conditional Gaussians + If the chain is long enough,

we can sample x;~N (0, ) ‘




<+—— Forward diffusion process : progressively add small amount of noise to the sample

T
Q(xt|xt—1) = N(xt; vV1-— Bixi_1, 5t1) Q(xl:T\Xo) — H Q(xt|xt—1)
t=1

progressively add small amount of Gaussian noise at each step controlled by a variance
schedule {8y € (0,1)}_,

‘ Given a sample x,~q(x), we generate a sequence of noisy samples x; ... xy

x; can be sampled directly in a closed form using the reparametrization trick !
Nice a; =1—[rand a; = HL Q;: ‘ X = \/&_txo +v1—z
property q(x¢|x0) = N (x5 vV @uxo, (1 — @;)I)

Do not need to follow the chain in the forward process !




— Reverse diffusion process : try to denoise the data and to reverse the forward process

Obijective is to reverse the diffusion process so we can create samples from a gaussian
noise input x;~N (0, 1)

q(x:_1|x;) is intractable so learn a model pg to approximate these conditional

probabilities and estimate the reverse process

T

po o) = pCer) | [ poCeeoalo)

N

N(O I) Markov chain = a given reverse diffusion
’ transition only depends on previous time step

N(.Ue (xt; t)! 26 (xt; t))

With g (x4, t), 2o (x4, t) that could be computed using neural networks




Train | ng I.OSS To learn the parameters of ug(x;,t), Xg(xs,t) we need a

training objective
@ Do Xt 1|Xt
- Xt|xt 1) .

= finding the reverse Markov transitions that maximize the likelihood of the training data is
equivalent to minimizing the variational upper bound on the negative log likelihood

In practice the framework is @
very similar to a VAE !

~-
~

q(x1.7[x%0)

E[—log pe(x0)] < E, [—log M] =: L1y

After some (interesting) calculus

Lo = —log pg(wo|z1)
L Lywy=Lo+Ly+...+Lp_1+ L Li_1 = Dgr(q(xs_1|ze, 70) || po(mi_1]24))

Lt = Dk r(q(zr|xo) || plzT))




Could stop here BUT the problem is that in practice this variational lower bound loss
does not work as well as expected

‘ Will work with a simplified loss
Lo = —log po(xo|z1)
Low= Lo+ L1 +..+Lr1+Lr Li—1 = Drr(q(xi-1|me, 20) || po(wi-1]2t))

Lty = Dgr(q(zr|v0) || p(2T))

1)Ly :| Ly = Dgr(q(zr|zo) || p(TT))

No learnable parameters, constant and can be ignored

Can be ignored, will be directly included in the simplified L; term

10



3) L, : Li—1 = Drr(q(wi—1]2t, 20) || po(zi-1|2t))

) ‘/~ The reverse conditional probability is tractable
q(xe-11xc, %) = N(i(xt, Xo), Pel) if conditioned on x,, a closed form expression
can be extracted !

q(x: 1]x0)
q(x¢|x0)
And the nice property :  q(x:|x0) = N (x; Vauxo, (1—ay)I)
Q(xt|xt—1) = N(xt; \/1 — BexX¢-1, IBtI)

fo= L g
T 1o The mean of the reverse

_ — conditional can be expressed

Vo (l —ay VA TRy
ti &tl)xtJr—l t;txo in terms of x; and x; !

— g — g

Using Bayes :  q(x¢—1]x¢,%X0) = q(x¢|x4-1,X0)

fre(x¢,X0) =

11




3)L;: Li—1 = Dgr(q(wi—1]xs, 20) || po(2i—1]|24))

N

Po(Xt—11x¢) = N(ug(x¢, t), Zo(xt, t))

We must define the functional forms of the learned ug(x;,t), Zg(xs, t) ©
# Zo(x,, t) is set to a constant Zy(x,, t) = oI with ¢? = f5,
And The KL terms can be expressed in closed form (gaussian), it becomes :

Lt—l X Hﬂt(xtaxo) — MB(xtat)Hz

the network simply learns to predict the diffusion posterior mean !

Rem : The weighting term (which depends on the fixed variance and thus on the time step is ignored as it was found

beneficial for sample quality and simpler to implement ~ Better to give the same importance to every timestep 12




3) Ly : Ly oc ||fug (e, 20) — ue(xt,t)|\2

> [i(x, xp) is a linear combination of x; and x, that depends on the variance schedule
B; and can be computed in closed form

» g (xs, t) can be computed using a neural network

= could stop here and train ug(x;, t) BUT it was found beneficial to reparametrize the
mean to predict directly the noise !

Vou(l — agq) X, + v 184 x

1—ay 1—ay

x; —Vaxo++1—a&z  (nice property)

(linear combination)

Let fue(x¢,X0) = 0

» [y = : (Xt i Zt) &  Mo(Xt,t) = L (Xt - LEO(’%Q)
Vag v1-ay \/OTt V1—ay

13



1
’]'t — > (Xt - \/]_ﬁ—t—o_tt Zt) & M’H(Xtat) = T = (Xt - LG@(Xht))

Simplified loss :

Loimpte (0) = Ei e |||€ = €0(v/Grxo + VT = diue, )|”]
Xt

Overall, only need a network to predict the noise based on the timestep t
(which contains the noise level information) and the image x;

Then this estimation can be used to compute an estimation of x; and x;_;

14



Training algorithm :

Al S oy

repeat
xo ~ q(Xo)
t ~ Uniform({1,...,T})
e ~N(0,1I)

Take gradient descent step on

Vo ||€ — ea(v/arxo + /1 — @te,t)H2

6: until converged
1: xp ~ N(0,1)
2: fort=1T,...,1do

Sampling algorithm : 3: z~N(0,I)ift > 1,elsez=0
4 X1 = = (Xt -~ \}%ee(xwf)) + 012
5: end for Sample at each step in pg(x,_1|x¢)
6: return X




Practical implementation

Giving the loss, we need a network €g(x;, t) that predicts the noise based on the image x;
and the timestep t

Network input and output have identical dimension - U-Net like architecture

> Succession of ResNet blocks, group
. normalization, attention layers and
down/up sampling layers
_
—>I I I— The network is conditioned on the timestep by

introducing it in every Resnet block after sinusoidal
embedding

The variance schedule is a critical parameter of the diffusion model,

possibilities : linear, cosine, quadratic, sigmoid
16




Denoising Diffusion Implicit Models
Jiaming Song, Chenlin Meng & Stefano Ermon, 2021

Very slow !

For sampling, diffusion models have to follow the entire chain ‘ ,
Pine typically T=1000

DDIM is a generalization of DDPM to non Markovian diffusion process

_ @ - @_“ » @;3];;,;0@ ;g;;;o

Q(€B2|CU1

The idea is that the DDPM objective only depends on the marginal
q(x¢[x0) = N (x4; v/asxo, (1 — @)I) and not on the joint q(x1.7|T0)

Thus DDIM proposes to rewrite go(%:—1|X¢,X0) parametrized by a std ¢
chosen to ensure q(x:[x0) = N (x4 v/ @xo, (1 — @;)I)
17




— _ Xt — VouXo o
qo\X¢—1|X¢, X)) = N Xt 15V ¢ 1Xg + \/1 — Q1 — o? 011
B | o) = NV PRI o)

Qo (T1—1|Tt, 0)qs (T4 |20)
QJ(mt—l |$0)

The forward process ¢o(x¢|Ti—1,20) =

is no longer Markovian

We have a new family of models. For sampling :

(t)
T — 1 — oy’ (T
Tt—1 = /Ot—1 ( d \/a_t o ( t)) —I-\/l — Q1 —og-egt)(wt)—l- Tr€t
t N ~~

vy
N -

'

o - random noise
“direction pointing to x;”

~
* predicted xo”

Parametrization of o : 02 =17~ B
» n =1:we have exactly the same thing as DDPM ! DDIM is a generalization of DDPM
» n = 0:we have a deterministic sampling process, this is what’s called DDIM

We can go from one to the other to control stochasticity of generation process and change the model
18



Do we need to retrain for each different choice of o ?

No ! With Lg;my. Objective, DDIM paper proves that we are not only learning a generative
process for the Markovian inference process, but also generative processes for many non-
Markovian forward processes parametrized by o !

‘ Training DDPM gives directly the DDIM models ! Only need to
change the sampling process during generation

Speeding up the sampling ?

run a strided sampling schedule by taking the sampling update
every T/S steps.

Do
(Lo @_. During generation, we only sample a subset of S diffusion

~

L ql@s|@y, o) {g(_:c_-z\_as_ol___!_ ———————— 1 steps {Tl, v TS}

777777777

X7 — vV QXp
7

o;1)
v1—ay

q{)',T(XTI'_1|xT37 XO) - N-(XT,;_l; V 01X + \/1 — Q] — 0'?
19




Overall benefits of DDIM :

» Speed up sampling, train from an arbitrary number of steps and only sample from a subset
= can trade computational cost for sample quality

» Allows to generate higher quality samples when fewer steps

» Allows to control the stochasticity of the sampling process

» Generalization of DDPM without needing retraining

» Consistency, the DDIM generative process is deterministic

- Samples conditioned on the same latent give the same output
- Allows interpolation between samples
- Allows DDIM inversion, obtain latent from the image

Typ1 — Ty = Q1 [(\ﬂ/ﬁw - \/1/55t+1) Ty + (\/l/atﬂ —1-/1/a; - 1) fﬂ(mt)]

CIFARI10 (32 x 32) CelebA (64 x 64)
S 10 20 50 100 1000 10 20 50 100 1000

00| 13.36  6.84 4.67 4.16 4.04 | 17.33 1373 9.7 6.53 3.51
02| 1404 711 4717 425 4.09 1766 1411  9.51 6.79 3.64
05| 1666 835 5.25 4.46 4.29 19.86 16.06 11.01  8.09 4.28
1.0 | 41.07 1836  8.01 5.78 473 | 3312 2603 1848 1393 598

& | 36743 13337 3272 9.99 3.17 | 299.71 18383 71.71 4520  3.26

20



Diffusion Models Beat GANs on Image Synthesis

Prafulla Dhariwal & Alex Nichol, 2021

Propose several architectural changes through ablation study (e.g. depth, number of heads of

attn layers, etc) U
» ADM - ablated diffusion model  >tandard diffusion model block
used in GLIDE or DALLE2

» Learned X, (x,, t) : learned sampling variance instead of a fixed one for pg (x;_4|x;)
220 (ajt, t) = exp(v log Bt + (1 — U) log /ét) » Lsimple + A]——/Vlb

» Adaptive Group Normalization : propose an AdaGn layer to incorporate the embedding in
each residual block after group normalization AdaGN(h, y) = y, GroupNorm(k) + s
y = |ys,yp| Linear projection of the embedding

» Super resolution : propose an upsampling diffusion model by conditioning a diffusion

model on the downsampled input, provided to the model concatenated in the channel
dimension after bicubic upsampling

21



Conditioning

Most generation tasks are conditional ! e.g. want to condition the generated images on labels
» How to condition diffusion models ?

1

Link between diffusion models and score matching : V,, logpo(z:) = — —
—

eo(x)

Intuition: Now we want to make a conditional prediction V, logp(z | y) given a labely

Idea : use Bayes p(z|y)= Ply ‘pm(;p(w) m) V. logp(z|y) = V,logp(y|z)+ V,logp(z)

Meaning we can obtain the conditional prediction as a sum of the
uncoditional prediction + a conditional term !

22




Classifier guidance

V.logp(y | z)

p(y | ) is exactly what classifiers try to fit ! , »
computed with a classifier

Classifier guidance 'V, log’p,y(a‘: | y) =V, logp(a:) +vV, ]ogp(y | :IZ)

All we need to turn an unconditional diffusion model into a conditional one, is a classifier
We can obtain the conditional model without even retraining from the unconditional one

Parameter y - guidance scale : usually >1 to drive even further the prediction and amplify
the influence of the conditioning signal (at the cost of diversity)

In practice we still train conditional models and use classifier guidance to drive the sampling
even further towards the class by adding a class embedding in the model
W) jo(xly) = polrily) + 5 - So(rely) Vi, logpo(ylre)
Y

Y
Conditional pred guidance 23
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Figure 6: Samples from BigGAN-deep with truncation 1.0 (FID 6.95, left) vs samples from our
diffusion model with guidance (FID 4.59, middle) and samples from the training set (right).




Figure 1: Selected samples from our best ImageNet 512x 512 model (FID 3.85)




Problems :
» need a classifier which can cope with high noise levels thus limiting the use of pretrained

classifier and forcing the training of a classifier specifically for the purpose of guidance
» most of the information in the input is not relevant to predict the label = the gradient of
the classifier can yield arbitrary (and even adversarial) directions in input space

» Classifier-Free Diffusion Guidance

Jonathan Ho & Tim Salimans, 2021

Guidance : V,logp,(z | y) = V,logp(z) + vV, logp(y | z)

p(z |y) p(y)
p(z)

Bayes: p(y|z) =

Classifier free guidance

Vilogpy(z | y) = Vo logp(z) +v (Ve logp(z | y) — V. logp(z))

; p(x¢|y)
Implicit classifier : p*(y|xy) o
P ( ‘ ) P(iUt)

26



» €o(xt|y) = eg(xe|0) + s - (ea(xe|y) — eo(x¢]0))

Instead of training only an unconditional model, we now train a conditional model BUT with
sometimes empty labels @ (so train at the same time a conditional and unconditional model)

The same model is now used to make the prediction + an implicit classifier !

€o(xt|y) = eo(xt|0) + s - (eo(wt|y) — € (x4]0))

» s = 0: equivalent to an unconditional prediciton BUT magic happens when s > 1
» s = 1:equivalent to a simple conditional prediction (typically use s = 3)

Adv. : gradient much more robust than with a classifier ’/Zﬁe

+ only have to train a single model (with dropout) 69($t|®) Co\LtY

Cost of guidance : diversity



Two sets of samples from OpenAl's GLIDE model, for the prompt ‘A stained glass window of a panda eating
bamboo.', taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right.




Application : text-2-image

GLIDE, DALLE-2, Imagen



GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

G3p

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”




Hierarchical Text-Conditional Image Generation with CLIP Latents

a propaganda poster depicting a cat dressed as french emperor
napoleon holding a piece of cheese

a dolphin in an astronaut suit on saturn, artstation a teddy bear on a skateboard in times square




Photorealistic Text-to-Image Diffusion Models with Deep Language

Understanding Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Jonathan
Ho, David J Fleet, Mohammad Norouzi et.al. , 2022

Imagen s Imagen O - Saore A g Imagen

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
fairytale book. bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

32




These 3 models are all classifier free conditional diffusion models with super resolution
diffusion models on top to upsample the result !
To condition on the text embedding they add it to the timestep embedding + incorporate it

in the attention layers

The only fundamental difference between them is the o ke et s o tied ™
conditioning/text embedding signal :
» GLIDE : simple transformer ToxtEmbeceing
» DALLE2 : CLIP image embedding obtained with a prior
diffusion network conditioned on caption 51 x 64 Image
» Imagen : very large transformer network T5-XXL | supecesotion

256 = 256 Image

“a corgi
playing a
flame
throwing
trumpet”

Super-Resolution
Diffusion Model

1024 > 1024 Image

33
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