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Traditional Nyquist Sampling

Compression

Classic Nyquist sampling:
> We sample z.
» Then compress; e.g. MP3, JPEG etc.

» Conclusion: we sample a lot of data, but throw most of it
away.
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Basics

What is compressed sensing?
» New signal acquisition/compression theory from around 2004.
» Combines sampling and compression of signals.

> Interesting implication: Signals can be sampled significantly
below Nyquist rate!
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Requirements

The signal must be sparse in a known dictionary:

dictionary sparse original
matrix W vector x signal

vector z
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Compressed Sensing

Acquisition

compression original  compressed
matrix ® signal vector y
vector z

» The signal vector is mixed with a measurement matrix before
sampling.

» Sample the (fewer) mixed “measurements”.
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The Reconstruction Principle

compression  original  compressed dictionary sparse reconstructed

matrix signal vector y matrix ¥ vector X signal
vector z -— vector 2

optimization-based reconstruction
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Compressed Sensing

Conclusion

Is compressed sensing (CS) always a good idea?
» No!
When to use CS
» When samples are otherwise too “expensive”’ to take...

For example:

» Sensor is expensive to build with sufficiently high
resolution /rate.

» Collecting enough samples takes too long.

» Collecting fewer samples saves significant energy.
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Sparse Signal Processing in Wireless Communications (SparSig)

» New ways to sample, quantize, process and
re-synthesize analog signals.

» Focus on wireless communication and signals for such a
system.

» Main contributions: to develop a framework for handling
realistic signals (which are noisy, distorted etc.) and to
provide a convincing validation (including experiments).

» Objective: to reduce the power consumption of

converters and digital signal processing in devices
typically used in wireless communication systems.
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4th Generation Mobile Communication and Test Platform (4GMCT)

The compressed sensing part of this project

» Wireless communication in 4G communication systems.

» Concepts and electronic circuits to perform
energy-efficient sampling, quantization and processing
of signals.

> Purpose: investigate theoretical basis, analyze and
propose solutions for implementing compressed
sampling techniques in communication receivers.

» Main issue: to propose solutions for sub-Nyquist
sampling and quantization, as well as a reconstruction
algorithm design.
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» Compressive sensing in a CDMA or DSSS receiver.

> Possibility to decrease the sampling rate.

12 |RF
» Made possible by the spreading codes used to better Communication
combat interference or low SNR at the receiver.
» These spreading codes decrease the information rate per
chip or bit sent, which enables a sparse decomposition
approach.
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Compressive Sensing for Spread Spectrum Signals

Compressed
» Example with |IEEE 802.15.4 physical layer (for example Sensing In KF
. and
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» No compressed sensing reconstruction — simpler
compressive classification in stead.
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Compressive Sensing for Spread Spectrum Signals

Compressed
Sensing in RF
Communication
and
Analog-to-Digital
Conversion

Thomas Arildsen

14 |RF
\ i

Communication
\

Figure: Bit-error-rate — downsampling at the receiver.

TPS, Dept. of
Electronic Systems,
34) Aalborg University



RF Communication

Compressed Sensing-Based Direct Conversion Receiver

Compressed
Sensing in RF
Communication
and
Analog-to-Digital
Conversion

» Computational power of modern data receivers enables Thomas Arildsen
moving more processing from the analog to the digital

domain.
15 |RF

Communication

TPS, Dept. of
Electronic Systems,
34) Aalborg University



RF Communication

Compressed Sensing-Based Direct Conversion Receiver

Compressed
Sensing in RF
Communication
and
Analog-to-Digital
) . Conversion
» Computational power of modern data receivers enables Thomas Arildsen
moving more processing from the analog to the digital
domain.
. o 15 )RF
» Use compressed sensing to relax the analog filtering Communication
requirements in a direct conversion receiver.
TPS, Dept. of

Electronic Systems,
34) Aalborg University



RF Communication

Compressed Sensing-Based Direct Conversion Receiver

Compressed
Sensing in RF
Communication
and
Analog-to-Digital
Conversion

» Computational power of modern data receivers enables Thomas Arildsen
moving more processing from the analog to the digital
domain.
. o 15 )RF
> Use compressed sensing to relax the analog filtering Communication

requirements in a direct conversion receiver.

» The filtered, down-converted radio signal is randomly
sampled with a sub-Nyquist average sampling frequency.

TPS, Dept. of
Electronic Systems,
34) Aalborg University



RF Communication

Compressed Sensing-Based Direct Conversion Receiver

» Computational power of modern data receivers enables
moving more processing from the analog to the digital
domain.

> Use compressed sensing to relax the analog filtering
requirements in a direct conversion receiver.

» The filtered, down-converted radio signal is randomly
sampled with a sub-Nyquist average sampling frequency.

» Exploits frequency-domain sparsity of the
down-converted radio signals.
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Compressed Sensing-Based Direct Conversion Receiver

Frequencies allowed by

Noise Desired signal Blockers the radio band-pass filter

Figure: Spectral content around desired signal.

Compressed
Sensing in RF
Communication

and
Analog-to-Digital

Conversion

Thomas Arildsen

16 |RF
Communication

TPS, Dept. of
Electronic Systems,
34) Aalborg University



RF Communication

Compressed Sensing-Based Direct Conversion Receiver
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Compressed Sensing-Based Direct Conversion Receiver
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affected by noise correlated with the measurements?
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+n,

20 )Reconstruction

<
[
< >

TPS, Dept. of
Electronic Systems,
34) Aalborg University



Reconstruction

Correlation Between Measurements and Noise
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» What happens when compressed measurements are Thomas Arildsen
affected by noise correlated with the measurements?
y = Ax
- 20 )Reconstruction
y=y-+n,

» Where does this happen?

For example when quantizing measurements at low
resolution.
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Correlation Between Measurements and Noise
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» Linear correlated noise model: Thomas Arildsen
y = aAx +w,

» Leads to noise correlated with the measurements

21 )Reconstruction
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Correlation Between Measurements and Noise
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» What to do about it?

» We can simply rescale the estimate of x after BPDN
reconstruction:
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Compressive Parameter Estimation
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> Instead of reconstruction, it is possible to use Analog:to-Digital

Conversion

compressive sensing for parameter estimation. Thomas Arildsen
» Especially interesting: manifold models.

> Allow parameters drawn from a continuous space,
rather than from a discrete dictionary as usual.

» We are currently investigating such models for use in 25)D/A Conversion
time delay estimation and sinosoidal parameter
estimation.

> We show that it is possible to use compressive sensing
and still attain good mean squared error on the
parameter estimate.
TPS, Dept. of
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34) Aalborg University
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Quantization in CS with a Fixed Bit Budget

» Investigation of reconstruction performance in
compressive sensing with quantized measurements.

» Trade-off between quantizer resolution and number of
compressed measurements for fixed total numbers of
bits.

» We compare two methods by Laska et al. tailored to
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De-Noising method.
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Figure: Normalized mean-squared error. Saturation rate 5%. 32) Aalborg University



D/A Conversion

Quantization in CS with a Fixed Bit Budget

Compressed

» Existing approaches tailored for saturation effects do Sensing in RF
. . . ) . Communication

not consider information spent on identifying saturated and
Analog-to-Digital

measurements. Conversion

Thomas Arildsen

28 |D/A Conversion

TPS, Dept. of
Electronic Systems,
34) Aalborg University



D/A Conversion

Quantization in CS with a Fixed Bit Budget

» Existing approaches tailored for saturation effects do
not consider information spent on identifying saturated
measurements.
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Quantization in CS with a Fixed Bit Budget
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» Existing approaches tailored for saturation effects do Sensing in RF
. . . ) . Communication

not consider information spent on identifying saturated and
Analog-to-Digital

measurements. Conversion

Thomas Arildsen

» We propose reserving quantization indices to mark
saturated measurements.
» Applicable to current quantizer models.
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D/A Conversion

Filter Imperfections in Random Demodulator

» Applying compressed sensing (CS) to continuous
signals: analog sampling front-end providing a signal
representation compatible with CS.

» The random demodulator provides pseudo-random
linear projections of the analog input signal.

» The analog front-end has to be modeled accurately in
the reconstruction algorithm.
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Filter Imperfections in Random Demodulator
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— ideal impulse response of the filter
— deviated response value fluctuation #1
— deviated response value fluctuation #2
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Measurement Matrix Deviations due to Filter Imperfections in Random
Demodulator

» Simulations of imperfect filter: component variation 5%
and 10% for capacitors and inductors respectively.

» Simulations of 16 worst-case scenarios using 4th order
Butterworth filter indicated up to 40 dB loss in SNR
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Figure: Reconstruction error corner cases for imperfect filter.
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Calibration of Filter Imperfections in the Random Demodulator

» Mismatch considered an additive error in the discretized
impulse response: y = (A + E)x
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Calibration of Filter Imperfections in the Random Demodulator

» Mismatch considered an additive error in the discretized
impulse response: y = (A + E)x

» Estimate error by sampling a known signal, enabling
least-squares estimation of the impulse response error.
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Calibration of Filter Imperfections in the Random Demodulator

» Mismatch considered an additive error in the discretized
impulse response: y = (A + E)x

» Estimate error by sampling a known signal, enabling
least-squares estimation of the impulse response error.

» Error and known problem structure are used to correct
the measurement matrix.
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Calibration of Filter Imperfections in the Random Demodulator

» Mismatch considered an additive error in the discretized
impulse response: y = (A + E)x

» Estimate error by sampling a known signal, enabling
least-squares estimation of the impulse response error.

» Error and known problem structure are used to correct
the measurement matrix.

» Simulation results demonstrate the effectiveness of the
calibration technique even for highly deviating low-pass
filter responses.
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Calibration of Filter Imperfections in the Random Demodulator

Compressed
Sensing in RF
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CS reconstrucion using (BP - SPGL1) and
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Figure: Example: improvements from calibration of all filter
components deviating up to 2%.
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