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Motivation

Motivation

Sampling and reconstruction in every day life:

Surfing the internet

Taking pictures

Listening to music

www.clker.com, www.flaticon.com, clipart-library.com
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Motivation

Fluorescence Microscopy

Figure: Schematic representation of fluorescence microscope
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Reconstruction Methods Setting

Spaces

Sampling space:
S = span{ωk ∶ k ∈ N} and SN = span{ωk ∶ k = 1, . . . ,N}

Linear measurements:
mk = ⟨f , ωk⟩, k ∈ N
Reconstruction space:
R = span{ϕk ∶ k ∈ N} and RM = span{ϕk ∶ k = 1, . . . ,M}

(a) Walsh functions (b) Daubechies 4 wavelet

Figure: Reconstruction and Sampling function

Laura Thesing Sampling from binary measurements 28 October 2020 5 / 32



Reconstruction Methods Setting

Change of basis matrix

Notation:

U =

⎛
⎜
⎜
⎜
⎝

u11 . . . u1M . . .
⋮ ⋱ ⋮

uN1 . . . uNM
⋮ ⋱

⎞
⎟
⎟
⎟
⎠

with uij = ⟨ωi , ϕj⟩

We denote with
U[N,M]

= PNUPM

the part of the matrix of the first N columns and M rows and with

α[N]
= [α1, . . . , αM] and m[M]

= [m1, . . . ,mN]
T .
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Reconstruction Methods Linear Reconstruction Methods

Reconstruction Methods

Desired properties:

Accuracy,

Stability and

Sometimes consistency.
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Reconstruction Methods Linear Reconstruction Methods

Generalized Sampling and the PBDW-method

One calculates the least sqare solution of the following linear equation for
α[M] ∈ RM :

U[M,N]α[M]
= m(f )[N],

where m(f )[N] = (m(f )1, . . . ,m(f )N) ∈ RN . The solution is given by

GN,M(f ) =
M

∑
i=1

αiϕi .

For the PBDW-method the solution is tweaked to be consistent, i.e.

DN,M(f ) = GN,M(f ) + PSN (f ) − PSN (GN,M(f )).
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Reconstruction Methods Linear Reconstruction Methods

Subspace Angle

The quality of both methods depends highly on the subspace angle

cos(ω(RM ,SN)) = inf
ϕ∈RM ,∥ϕ∥=1

∥PSNϕ∥ =
1

µ(RM ,SN)
,

The condition number κ for both methods is

κ(RM ,SN) = µ(RM ,SN).

and they are optimal up to µ(RM ,SN).
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Reconstruction Methods Non-linear Reconstruction Methods

Non-linear Reconstruction Methods

Use the sparsity of the signal and subsampling ⇒ Compressed sensing

Solve `1 minimization problem:

min
α∈`1(N)

∣∣α∣∣`1 subject to ∣∣PΩUα −mΩ∣∣2 ≤ δ,

where Ω is the sampling pattern and mΩ the samples with the index in Ω.

(a) Norm balls (b) Norm balls

Figure: Intuition for norm choices
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Reconstruction Methods Non-linear Reconstruction Methods

Classic CS to Structured CS

Classic CS

Chooses Ω to be fully random

Does not use the additional structure

Needs incoherence of the reconstruction matrix

Structured CS

Takes the special sparsity structure of the signal into account

Resolves the high coherence in the first elements with more samples
in this area and fewer samples later

Needs to be adapted to application type
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Reconstruction Methods Non-linear Reconstruction Methods

Recovery Guarantees

Need to ensure that the reconstruction is guaranteed:

Linear methods: relationship number of samples N to number of
coefficients M
→ Stable sampling rate (SSR)

Non-linear methods: Choice of the sampling pattern Ω and the
maximal sampling bandwidth N with the balancing property
→ Non-uniform recovery guarantees
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Analysis Sampling and Reconstruction Spaces

Walsh functions

Figure: The first 32 Walsh functions

The generalized Walsh
functions in L2([0,1]) are
given by

Wal(s, x) = (−1)∑i∈Z(si+si+1)x−i−1 .

with s = ∑i∈Z si2
i−1 with

si ∈ {0,1} and x = ∑i∈Z xi2
i−1

with xi ∈ {0,1}.
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Analysis Sampling and Reconstruction Spaces

Wavelets

For some mother wavelet ψ we get the Wavelet space

W = {ψj ,k(x) = 2j/2ψ(2jx − k), k = 0, . . . ,2j − 1, j ∈ Z} .

Figure: Daubechies 4 wavelet

Laura Thesing Sampling from binary measurements 28 October 2020 14 / 32



Analysis Sampling and Reconstruction Spaces

Sparsity Structure

Natural data is not only sparse in the representation space but sparse in
levels.

The number of non-zero coefficients decreases in higher levels

The largest coefficients exist in lower levels

Large values because of discontinuities repeat themselves in all levels

0 50 100 150
-20

-15

-10

-5

0

5

10

Figure: Sparsity structure for smooth and discontinuous signal
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Analysis Sampling and Reconstruction Spaces

Sparsity Structure

Definition (Adcock et al.)

The set of (s,M)- sparse vectors is Σs,M with

∆k ∶= supp(x) ∩ {Mk−1 + 1, . . . ,Mk} ,

satisfies ∣∆k ∣ ≤ sk for all k = 1, . . . , r . The approximation error is

σs,M(x) = min
η∈Σs,M

∣∣x − η∣∣`1 .
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Analysis Coherence and Sparsity in Levels

Reconstruction Matrix

(a) Walsh samples and Haar Wavelets (b) Walsh samples and boundary Wavelets
of order 2

Figure: Change of basis matrix U
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Analysis Coherence and Sparsity in Levels

Intuition
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(a) Cancelation by
highlevel wavelet
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(c) Cancelation by high
sequency Walsh function

Figure: Intuition for reconstruction matrix structure
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Analysis Coherence and Sparsity in Levels

Level structure and the ordering for the sampling bands
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Figure: Reconstruction matrix and potential wavelet coefficients
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Analysis Coherence and Sparsity in Levels

Multilevel sampling scheme

Definition (Adcock et al.)

The sampling set
Ω = ΩN,m = Ω1 ∪ . . . ∪Ωr .

is the MLS with samples chosen at random in each level

Ωk ⊂ {Nk−1 + 1, . . . ,Nk} , ∣Ωk ∣ = mk , k = 1, . . . , r .
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Recovery Guarantees

Linearity of the Stable Sampling Rate

Theorem (Hansen, T.)

Let M = 2dR with some R ∈ N the amount of reconstructed coefficients,
then there exists for all θ ∈ (1,∞) a constant Sθ such that for all amount
of samples with

N ≥ 2dRSθ

we have
µ(RM ,SN) ≤ θ.
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Recovery Guarantees

Non-uniform recovery results in 1D

Theorem (Hansen, T.)

Let Ω = ΩN,m be a multilevel sampling scheme such that the following
holds:

1

N ≳M2
⋅ log2(C1).

2 For each k = 1, . . . , r ,

mk ≳ log(ε−1
) log (C2) (

r

∑
l=1

2−∣k−l ∣/2sl)

Then with probability exceeding 1 − sε, any minimizer α ∈ `1(N) satisfies

∣∣α − x ∣∣2 ≤ c ⋅ (δ(1 + C3

√
s) + σs,M(f )) .
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Numerical Experiments

Stable Sampling Rate
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(c) db8 - S2 = 2

(d) Haar-Walsh (e) db2 - Walsh (f) db8 - Walsh

Figure: Stable sampling rate for θ = 2 and reconstruction matrix
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Numerical Experiments

Linear Reconstruction
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(f) TW - N = 192

Figure: Reconstruction with Daubechies 8 Wavelets and the inverse Walsh.
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Numerical Experiments

Linear Reconstruction

(a) Original Signal (b) PBDW - ∣m∣ = 128, (c) TW - ∣m∣ = 128

(d) GS - ∣m∣ = 128 (e) PBDW - ∣m∣ = 256 (f) TW - ∣m∣ = 256

Figure: Linear reconstruction with db8 and dimRM = 64.
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Numerical Experiments

Fourier Experiment

(a) Original Signal (b) PBDW- ∣m∣ = 64 (c) TF - ∣m∣ = 64

(d) GS - ∣m∣ = 64 (e) PBDW - ∣m∣ = 256 (f) TF - ∣m∣ = 256

Figure: Fourier measurements with Haar wavelets reconstructoin and dimRM = 32
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Numerical Experiments

Sampling Pattern

50 100 150 200 250

(a) N = 28

100 200 300 400 500

(b) N = 29

200 400 600 800 1000

(c) N = 210

Figure: Sampling pattern with ∣m∣ = 256, the samples are taken in the black area.
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Numerical Experiments

Non-linear Reconstruction
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Figure: Number of samples ∣m∣ = 256, Wavelet of order p = 4
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Numerical Experiments

Non-linear Reconstruction
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Figure: CS reconstruction with N = 26, ∣m∣ = 64 and TW reconstruction.
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Numerical Experiments

Impact of Sampling Bandwidth
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(a) Error plot for reconstruction of f
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(b) Error plot for reconstruction of g

Figure: CS and truncated Walsh series error values with ∣m∣ = 64 for f and
∣m∣ = 256 for g . The x-axis represents the sampling bandwidth N = 2R and the
y -axis the relative error term in the `2 norm.
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Numerical Experiments

Sampling under SSR and Flip Test
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Figure: GS below SSR with M = 512 and
db8
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Figure: Flip test with N = 28 and ∣m∣ = 64
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Thank you for your attention!
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Related Code

V. Antun.

Spgl1.

https://github.com/vegarant/spgl1, 2017.

V. Antun.

cww - generalized sampling with walsh sampling.

https://github.com/vegarant/cww, 2019.

M. Gataric and C. Poon.

A practical guide to the recovery of wavelet coefficients from fourier measurements.

SIAM J. Sci. Comput., 38(2):A1075–A1099, 2016.

L. Thesing.

infCS.

https://github.com/laurathesing/infCS, 2020.
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