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A radioactive analogue of glucose is injected in the patient
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PET images provide access to the metabolic activity of a patient
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Context. No access to raw data: processing in a post-reconstruction phase.

Goal. Quality improvement of PET images for a better delineation of the
tumor volumes.



Photon counting introduces multiplicative noise

Gaussian noise
due to the electronics

additive

Poisson noise
due to the counting process

multiplicative

PET images are potentially affected by both types of noise



External and internal factors degrade the image resolution

Free travel of positron before annihilation

Imperfect anticollinearity

Size and width of the detectors

Incident angle and depth of interaction of the photon in the detector

Type of tissue (attenuation)

Patient movement

...
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The blurring is assumed linear and uniform in the FoV

fblur( )

⊗

=

Function fblur is very general
The resolution may change for different locations in the FoV



The blurring is assumed linear and uniform in the FoV

fblur( )

⊗ =

Hypotheses : linear function
same effect for all pixels

fblur is written as a convolution with a kernel h



The kernel h is estimated by imaging a linear source

⊗ =

Needle filled with radioactive tracer
Acquisition at the center of the FoV
Approximation by an isotropic Gaussian function



The forward model links the observation to the original image

⊗= N ( )

Forward Model
Hypothesis. h uniform in the FoV

y = N (h⊗ x),

where N (·) is a noise operator



The inverse problem aims at estimating x from y

Deconvolution
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dist(h⊗ x, y) ill-posed!

Depends on the noise statistics

e.g., Gaussian noise ⇒ dist(h⊗ x, y) = 1
2‖h⊗ x− y‖22

Related to the image



We regularize the problem by adding prior information on the image

Deconvolution
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dist(h⊗ x, y) + S(x), subject to x � 0

S(x)⇒ TV norm, TGV norm, ‖Ψ∗ · ‖1

Related to the image



Solving the deconvolution convex problem
Regularized deconvolution problem

Hypotheses. h uniform in the FoV

minimize
x

dist(h⊗ x, y) + S(x)

subject to x � 0

minimize
x

∑L
j=1 Fj (Kjx) + G(x) Fj ,G : RN → (−∞,∞]

minimize
x

∑L
j=1 Fj (Kjx) + G(x) Kj : RN → RWj

Generalized
Forward-Backward (GFB)

G : convex and differentiable
Fj : convex, proper, l.s.c.

Hj (·) := Fj (Kj ·)

GFB: G differentiable & Kj tight frame or
(K∗

j Kj + I) easily invertible

ADMM: (
∑L

j=1 K∗
j Kj ) easily invertible

CP: slow convergence

s(k+1)
j = s(k)

j + λ(prox γ
wj

Hj
(2x(k) − s(k)

j − γ∇G(x(k)))− x(k))

x(k+1) =
∑L

j=1 wj s(k+1)

proxHj
(z) ⇒

{
Kj tight frame⇒ KjK∗

j = νI
(K∗

j Kj + I) easily invertible
[Raguet et al. 2013]



Solving the deconvolution convex problem
Regularized deconvolution problem

Hypotheses. h uniform in the FoV

minimize
x

dist(h⊗ x, y) + S(x)

subject to x � 0

minimize
x

∑L
j=1 Fj (Kjx) + G(x) Fj ,G : RN → (−∞,∞]

minimize
x

∑L
j=1 Fj (Kjx) + G(x) Kj : RN → RWj

Alternating Direction
Method of Multipliers

(ADMM)
Fj : convex, proper, l.s.c.

G = 0

GFB: G differentiable & Kj tight frame or
(K∗

j Kj + I) easily invertible

ADMM: (
∑L

j=1 K∗
j Kj ) easily invertible

CP: slow convergence
x(k+1) = (

∑L
j=1 µjK

∗
j Kj )

−1∑L
j=1 µjK

∗
j (u(k)

j + d(k)
j )

u(k+1)
j = proxFj/µj

(Kjx(k+1) − d(k)
j )

d(k+1)
j = d(k)

j − (Kjx(k+1) − u(k)
j )

[Almeida & Figueiredo 2013]



Solving the deconvolution convex problem
Regularized deconvolution problem

Hypotheses. h uniform in the FoV

minimize
x

dist(h⊗ x, y) + S(x)

subject to x � 0

minimize
x

∑L
j=1 Fj (Kjx) + G(x) Fj ,G : RN → (−∞,∞]

minimize
x

∑L
j=1 Fj (Kjx) + G(x) Kj : RN → RWj

Chambolle-Pock (CP)
Algorithm

Fj , G : convex, proper, l.s.c.

GFB: G differentiable & Kj tight frame or
(K∗

j Kj + I) easily invertible

ADMM: (
∑L

j=1 K∗
j Kj ) easily invertible

CP: general but slow convergence
s(k+1)
j = proxνF?j

(
s(k)
j + νKjx(k)

)
, j ∈ {1, · · · L}

x(k+1) = proxµ
L
G

(
x(k) − µ

L

∑L
j=1 K∗

j s
(k+1)
j

)
x(k+1) = 2 x(k+1) − x(k)

[Chambolle & Pock 2011]



An a priori estimation of h is not always possible

h does not follow a specific parametric model
h is not necessarily isotropic
the actual medium is different to the one used in the estimation of h
(related to the patient)
it is not always possible to access the scanner to estimate h



A multicentric study treats very diverse data�Context
Reconstructed images from different clinical centres

Challenge
No access to scanners properties (e.g., to the PSF h),

to raw data
Access to CT images from combined PET/CT scanners

Research question
How to restore an image and retrieve the PSF of the acquisition device from
corrupted observations and anatomical images from another imaging modality?



What to do if it is impossible to access kernel h?
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The objective is to simultaneously estimate h and restore the image

Blind deconvolution
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dist(h⊗ x, y) ill-posed! Related to the image

Related to the kernel



We already have some prior information on the image

Blind deconvolution
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dist(h⊗ x, y) + S(x), subject to x � 0 Related to the image

Related to the kernel



We impose some weak constraints on the kernel h

Non-negativity : h � 0

Flux preservation :
∑N

i=1 |hi | = 1

20 ⊗ h = 4
1

1

1

1
1

1

1 1
2

2
2 2

or photometric invariance property...

Probability Simplex PS



We impose some weak constraints on the kernel h

Blind deconvolution
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dist(h⊗ x, y) + S(x), subject to x � 0
minimize

x,h
dist(h⊗ x, y) + S(x), subject to h ∈ PS

Related to the image

Related to the kernel



The usual distribution of 18FDG in the body is known

PET-scan CT-scan

18FDG uptake

Skeletal muscle

Lung

Liver

Bone marrow

Left ventricular
myocardium

Gastrointestinal
system

Brain

Bladder



Including CT data in the blind deconvolution problem

Blind deconvolution
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Anatomical dat
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Related to the image

Related to the kernel



The blind deconvolution problem is non convex

Regularized blind deconvolution problem
Hypotheses. h uniform in the FoV

minimize
x,h

dist(h⊗ x, y) + S(x)

subject to x constant in , &

x � 0, h ∈ PS

Solved through an alternated minimization

(x(k), h(k))→ (x(k+1), h(k))→ (x(k+1), h(k+1))



Solving the blind deconvolution non-convex problem

Proximal alternating algorithmx(k+1) = argminx L(x, h(k)) + λ
(k)
x
2 ‖x− x(k)‖22

h(k+1) = argminh L(x(k+1), h) +
λ

(k)
h
2 ‖h− h(k)‖22

L(x, h) : objective function including cost function and constraints

λx , λh: cost-to-move parameters

Conditions

Structured problem: L(x, h) := F (x) + Q(x, h) + G(h)

- F : RN → (−∞,+∞] & G : RW → R ∪ (−∞,+∞] proper l.s.c.
- Q : RN × RW → R smooth C1 function with ∇Q Lipschitz continuous on

bounded subsets of RN × RW

L(x, h) bounded below, L(·, h) proper & λx , λh bounded

L(x, h) satisfies the Kurdyka-Lojasiewicz property ⇒ e.g., semi-algebraic function

(x(k+1), h(k+1)) bounded

⇒ (x(k+1), h(k+1)) converges to a critical point of L(x, h)

[Attouch et al. 2010, Attouch et al. 2013, González et al. 2016]



The problems in hand

Step 1: Blind deconvolution problem

minimize
x,h

ρ
2‖h⊗ x− y‖22 + TV(x)

subject to (∇x)i = 0 if i ∈ Ω1,Ω2, . . .,

x � 0, h ∈ PS.
Objective function: LBD(x, h, ρ)

h̃BD
x̃BD

Step 2: Non blind deconvolution problem

minimize
x

ρ
2‖h⊗ x− y‖22 + TV(x)

subject to x � 0.

Objective function: LNBD(x, h, ρ)

Ω1

Ω2

Ω3



The problems in hand

Step 1: Blind deconvolution problem

Set: x(1) = y; h(1) = δ0; ρ(1) = σ
√

2 logN; ε = σ
√

N+2
√
N; It = 5; It2 = 104

for t = 1 to It do

1: Proximal Alternating Algorithm with x(0) = x(t), h(0) = h(t) and ρ(0) = ρ(t)

for k = 1 to It2 do

x(k+1) = argminx LBD(x, h(k), ρ(k)) + λ
(k)
x
2 ‖x− x(k)‖22 ⇒ CP

h(k+1) = argminh LBD(x(k+1), h) +
λ

(k)
h
2 ‖h− h(k)‖22 ⇒ GFB

Return: x(t+1) = x(k+1) and h(t+1) = h(k+1)

2: Parameter update: r(t+1) = y − h(t+1) ⊗ x(t+1) ⇒ ρ(t+1) = ρ(t)(ε/‖r(t+1)‖2)

Return: x̃BD = x(t+1) and h̃BD = h(t+1)

h̃BD
x̃BD

Step 2: Non blind deconvolution problem

Set: x(1) = y; ρ = σ
√

2 logN; It = 104

for k = 1 to It do x(k+1) = argminx LNBD(x, h̃BD) ⇒ CP, GFB or ADMM
Return: x̃NBD = x(k+1)



What does this mean in practice?



Some synthetic results to validate the method

= ⊗ + n

Observation y Kernel h Original image x Noise

Simulates the kernel
used in practice:
isotropic Gaussian

Simulates a phantom
on cylinders filled

with 18FDG

additive
white

Gaussian



Blind deconvolution to estimate the image and the kernel

y

= ⊗ + n

Blind deconvolution

x constant in

R
SN

R
h̃

[d
B
]

BSNR [dB]

IS
N

R
x̃

[d
B
]

BSNR [dB]

Estimated kernel
h̃BD

Estimated image
x̃BD



Validation of the estimated kernel

y

= ⊗ + n

Non-blind deconvolution

h̃BD

Estimated image
x̃NBD



Validation of the estimated kernel

y

= ⊗ + n

Non-blind deconvolution

h̃BD

Estimated image
x̃NBD

Profiles 1-D of
x, x̃NBD and y



Validation of the estimated kernel

y

= ⊗ + n

Non-blind deconvolution

h̃BD

ISNR [dB] # iter time [s]

GFB 3.99 1162 6.07

ADMM 4.53 960 2.57

CP 4.08 6240 10.86

Estimated image
x̃NBD

Comparison of methods
..



Some experimental data - PET/CT Cliniques universitaires Saint-Luc

Observation of a phantom with cylinders filled with 18FDG

= ? ⊗ ? + n

Observation y Kernel h Original image x AWGN

Prior information

CT image to find a mask for the areas
with constant intensity in the PET
image



Blind deconvolution to estimate the image and the kernel

y

= ? ⊗ ? + n

Blind deconvolution

x constant in

Estimated kernel
h̃BD

Estimated image
x̃BD



Validation of the estimated kernel

y

= h̃ ⊗ ? + n

h̃BD

Non-blind
deconvolution

h̃Gaussian

Non-blind
deconvolution

Estimated image
x̃NBD

Estimated image
x̃Gaussian



Perspectives

Consider Poisson noise and/or mixed Poisson-Gaussian
Consider the 3-D volume instead of the 2-D reconstruction per slice
Add constraints to the structure of the kernel
Work with patient data
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