Implementation Aspects of the Random Demodulator for Compressive Sensing

UC Louvain, Louvain-la-Neuve - April 26, 2013

Pawel Jerzy Pankiewicz pjp@es.aau.dk @pawelpankiewicz

Department of Electronic Systems, The SparSig project

www.sparsesampling.com

Agenda

Introduction

Compressive Sensing Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way Random demodulator Measurement matrix

Hardware perspective

Random demodulator - influenced architectures Signal recovery and non-ideal effects RD with non-ideal filter

Supervised calibration

Quantization

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

WOLVATION

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

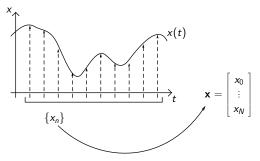
RD with non-ideal filter

Supervised calibration

Quantization

Classic sampling How do we discretize signals

Classic Nyquist sampling:



- ▶ $T < \frac{1}{2 \cdot B}$
- ► Nyquist criteria applies into worst case scenarios.
- Usually: we sample a lot of data, but throw most of it away (JPEG, MP3).

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Implementation Aspects of the Random Demodulator for Compressive Sensing

► New signal acquisition/compression theory from around 2004.

• Combines sampling and compression of signals.

"CS theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods use."¹

¹Candès and Wakin, "An Introduction To Compressive Sampling", '08'.

Compressive Sensing

Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

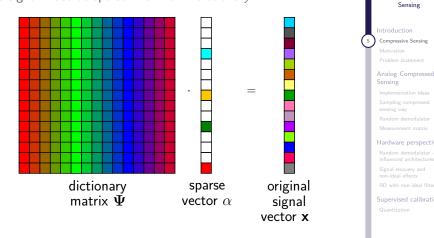
Quantization

Compressed Sensing Requirements

Implementation Aspects of the Random Demodulator

for Compressive

The signal must be sparse in a *known dictionary*:

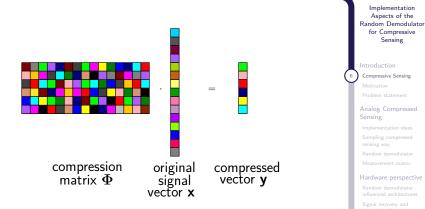


Dept. of Electronic Systems, Aalborg University,

Compressed Sensing Acquisition

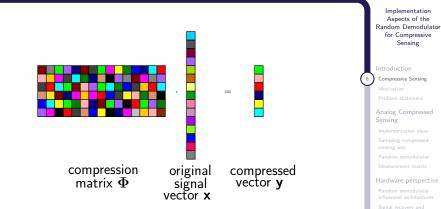
Implementation Aspects of the

for Compressive Sensing



Dept. of Electronic Systems, Aalborg University,

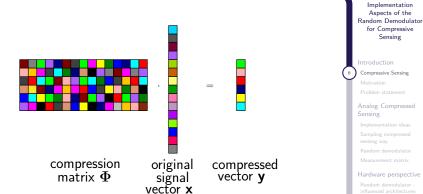
Compressed Sensing



The signal vector is mixed with a *measurement* matrix before sampling.

Dept. of Electronic Systems, Aalborg University,

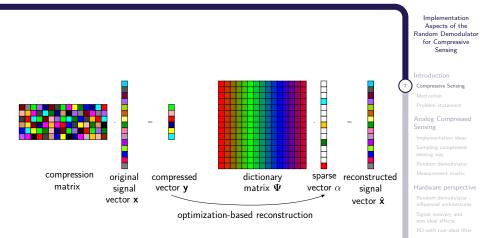
Compressed Sensing Acquisition



- The signal vector is mixed with a *measurement* matrix before sampling.
- Sample the (fewer) mixed "measurements".

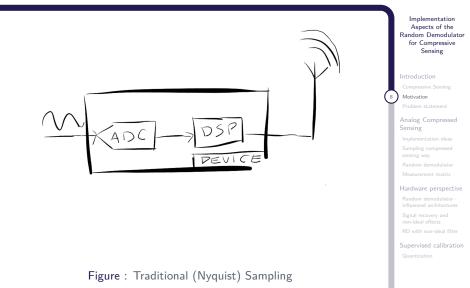
Compressive Sensing Analog Compressed

Compressed Sensing The Reconstruction Principle



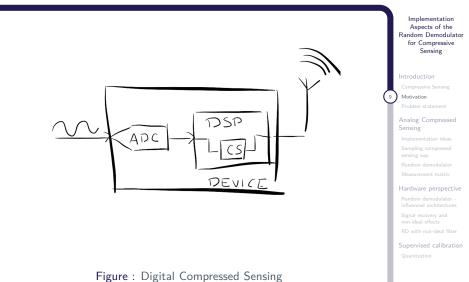
Dept. of Electronic Systems, Aalborg University,

$\underset{\tiny Option \ 1}{\text{Digital device}}$



Dept. of Electronic Systems, Aalborg University,

$\underset{Option \ 2}{\text{Digital device}}$



Digital device Option 3

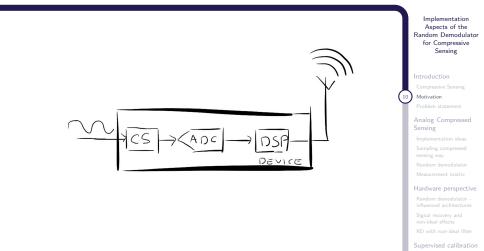


Figure : Analog Compressed Sensing

Dept. of Electronic Systems, Aalborg University,

Analog front-end is an energy bottleneck

- Inevitable analog-to-digital conversion
- Power consumption mainly dictated by the sampling frequency
- Need to sample according to Nyquist rate

Implementing analog compressed sensing

- ► Digital Signal Processors are now highly capable
- Trade analog processing over digital processing

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Analog Compressed

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Problem statement

Implementation Aspects of the

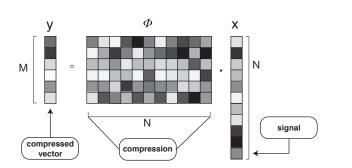


Figure : Discrete model of compressed sensing

- But how to deal with analog signals ?
- Analog signal has infinite dimension
- How to obtain compressed vector ?

Random Demodulator for Compressive Sensing Introduction Compressive Sensing Motivation Problem statement Analog Compressed Sensing Implementation ideas

Sampling compressed sensing way

Random demodulator

Hardwara parapactiva

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Implementation Aspects of the Random Demodulator for Compressive Sensing

- We need a model of an analog front-end in the measurement matrix
- Undesired hardware effects are unavoidable in the implementation.
- Static and dynamic hardware changes.
- Turns out that compressed sensing signal reconstruction methods do not account for many non-idealities.

Introduction Compressive Sensi

Motivation

Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator nfluenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Sample input and apply CS processing

Initially we can digitalize the signal using an analog-to-digital converter (ADC)

► Sample the signal with the Nyquist rate

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator

Weasurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

How to implement compressed sensing Following the digital model

Initially we can digitalize the signal using an analog-to-digital converter (ADC) $% \left(ADC\right) =0$

- ► Sample the signal with the Nyquist rate
- Apply compressed sensing to a digitized signal

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator

incustrement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

How to implement compressed sensing Following the digital model

Initially we can digitalize the signal using an analog-to-digital converter (ADC) $% \left(ADC\right) =0$

- ► Sample the signal with the Nyquist rate
- Apply compressed sensing to a digitized signal
- Obtain reconstructed signal

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator

The survey of th

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

How to implement compressed sensing Following the digital model

Sample input and apply CS processing

Initially we can digitalize the signal using an analog-to-digital converter (ADC)

- Sample the signal with the Nyquist rate
- Apply compressed sensing to a digitized signal
- Obtain reconstructed signal

Why this is a bad approach ?

Dept. of Electronic Systems, Aalborg University,

Implementation Aspects of the Random Demodulator for Compressive Sensing

Analog Compressed

Implementation ideas

How to implement compressed sensing Following the digital model

Sample input and apply CS processing

Initially we can digitalize the signal using an analog-to-digital converter (ADC) $% \left(ADC\right) =0$

- ► Sample the signal with the Nyquist rate
- Apply compressed sensing to a digitized signal
- Obtain reconstructed signal

Why this is a bad approach ?

- ► We sample with the Nyquist frequency
- No power consumption reduction There are no benefits
- We perform only unnecessary and energy consuming signal processing

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas

ampling compressed ensing way

Random demodulator

. . .

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

How to implement compressed sensing

Analog-to-information converter - the model we need

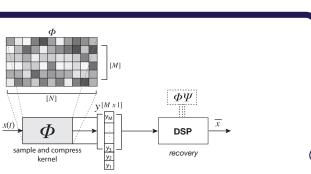


Figure : Compressed sensing scheme

• $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{x}$, $\mathbf{y}(M \times 1); \mathbf{\Phi}(M \times N); \mathbf{\Psi}(N \times N)$ We need an analog compression kernel that:

Implementation Aspects of the Random Demodulator for Compressive Sensing

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

How to implement compressed sensing

Analog-to-information converter - the model we need

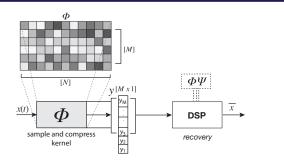


Figure : Compressed sensing scheme

• $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{x}$, $\mathbf{y}(M \times 1); \mathbf{\Phi}(M \times N); \mathbf{\Psi}(N \times N)$ We need an analog compression kernel that:

provides non-adaptive linear projections of the analog input

Implementation Aspects of the Random Demodulator for Compressive Sensing

Compressive Sensing

Viotivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

How to implement compressed sensing

Analog-to-information converter - the model we need

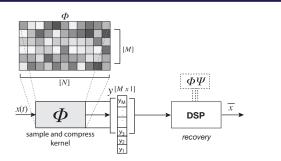


Figure : Compressed sensing scheme

• $\mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{x}$, $\mathbf{y}(M \times 1); \mathbf{\Phi}(M \times N); \mathbf{\Psi}(N \times N)$ We need an analog compression kernel that:

- provides non-adaptive linear projections of the analog input
- complies with a <u>RIP</u> and <u>incoherence</u> requirements

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Implementation Aspects of the

Random Demodulator for Compressive Sensing

Taking random samples with sub-Nyquist rate

► We decrease sampling frequency

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

- ► We decrease sampling frequency
- Our compression mechanism is incoherent with some of the sparse basis

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

- ► We decrease sampling frequency
- Our compression mechanism is incoherent with some of the sparse basis
- It is possible to model analog front-end (our encoder) in the DSP and perform reconstruction

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

- ► We decrease sampling frequency
- Our compression mechanism is incoherent with some of the sparse basis
- It is possible to model analog front-end (our encoder) in the DSP and perform reconstruction

Disadvantages ?

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation idea

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

- ► We decrease sampling frequency
- Our compression mechanism is incoherent with some of the sparse basis
- It is possible to model analog front-end (our encoder) in the DSP and perform reconstruction

Disadvantages ?

- performing random sampling brings a certain amount of imperfections
 - ► aperture jitter increases due to nonuniform clock usage
 - overall sampling frequency is decreased but we still might need high sampling grid
 - modeling the front-end by measurement matrix might be difficult

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Notivation

Problem statemen

Analog Compressed Sensing

Implementation idea:

Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantizatior

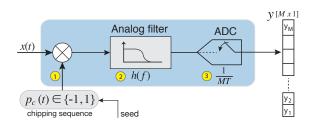


Figure : Random demodulator architecture²

- 1. demodulation
- 2. low-pass filtering (integration)
- 3. low-rate sampling

Implementation Aspects of the Random Demodulator for Compressive Sensing

Motivation Problem statement Analog Compressed Sensing

Sampling compressed sensing way

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

 $^{^{2}}$ Kirolos et al., "Analog-to-Information Conversion via Random Demodulation", '06.

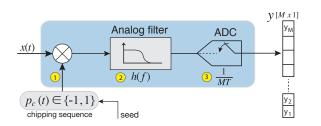


Figure : Random demodulator architecture²

1. demodulation

- mixing the signal with the pseudo-random sequence called the chipping sequence (e.g., [+1/-1])
- frequency of the sequence > Nyquist frequency of the input

 $^2{\rm Kirolos}$ et al., "Analog-to-Information Conversion via Random Demodulation", '06.

Implementation Aspects of the Random Demodulator for Compressive Sensing

Motivation Problem statement Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

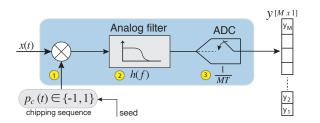


Figure : Random demodulator architecture²

2. low-pass filtering

- anti-aliasing operation prior to the low-rate sampling
- in respect to sampling frequency we set properly cut-off frequency f_{cut}

²Kirolos et al., "Analog-to-Information Conversion via Random Demodulation", '06.

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantizatior

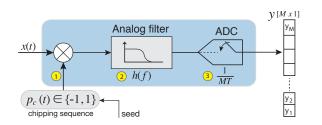


Figure : Random demodulator architecture²

- 3. low-rate sampling
 - sampling the signal using analog-to-digital converter
 - sampling frequency has to be higher than $2 \times f_{cut}$

²Kirolos et al., "Analog-to-Information Conversion via Random Demodulation", '06.

Implementation Aspects of the Random Demodulator for Compressive Sensing

Motivation Problem statement Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

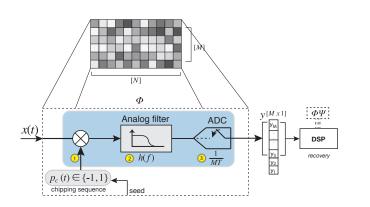
Quantization

57

Dept. of Electronic Systems, Aalborg University,

MATLAB DEMO

Source code available at: http://sparsesampling.com/pawelpankiewicz/rd



• $\mathbf{y} = \Phi \Psi \mathbf{x}, \quad \mathbf{y}(M \times 1); \Phi(M \times N); \Psi(N \times N)$

"Analog-to-Information Conversion via Random Demodulation"³

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

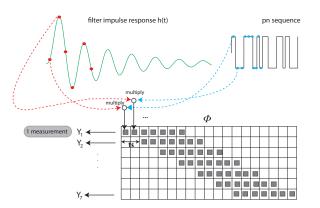
RD with non-ideal filter

Supervised calibration

Quantization

³Kirolos et al., "Analog-to-Information Conversion via Random Demodulation", '06.

Measurement matrix How do we model our compressing kernel



We need precise discrete models of:

- ▶ impulse response of the low-pass filter
- chipping sequence mixed with the signal

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation

Analog Compressed Sensing

Implementation ideas Sampling compressed

sensing way

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

We can construct Φ from 3 sub-matrices

▶ impulse response matrix:

$$\mathbf{H} = \begin{bmatrix} h[0] & h[-1] & h[-2] & \dots & \dots & h[-N+1] \\ h[1] & h[0] & h[-1] & \ddots & \ddots & \vdots \\ h[2] & h[1] & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & h[-1] & h[-2] \\ \vdots & & \ddots & h[1] & h[0] & h[-1] \\ h[N-1] & \dots & \dots & h[2] & h[1] & h[0] \end{bmatrix},$$

▶ where $\mathbf{h} = [h[0], \dots, h[L-2], h[L-1]]^{\mathrm{T}} \in \mathbb{R}^{L \times 1}$ represents $L \leq N$ consecutive impulse response samples.

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Measurement matrix

(1)

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Measurement matrix How do we model our compressing kernel

► sampling matrix:

$$\mathbf{B} = igoplus_{m=1}^M \kappa, \in \{0,1\}^{M imes N}$$

where $\kappa \in \{0,1\}^{1 \times R}$ such that:

$$\kappa[n] = egin{cases} 1, & ext{for } n=1 \ 0, & ext{otherwise} \end{cases},$$

 \bigoplus denotes direct matrix sum.

pseudo-random sequence matrix:

$$\mathbf{P} = \operatorname{diag}\{p[1], \ldots, p[N]\}.$$

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introducti

(2)

Compressive Sensing

Motivation

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Implementation Aspects of the Random Demodulator for Compressive Sensing

Analog Compressed

Measurement matrix

Dept. of Electronic Systems, Aalborg University,

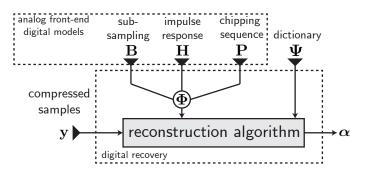


Figure : Information required for successful signal recovery

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator Measurement matrix

Hardware perspective

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

A lot of new architectures that share RD-like analog front-end - $\ensuremath{\mathsf{INSPIRED}}$

- Modulated Wideband Converter⁴
- Random-Modulation Pre-Integrator RMPI 5
 - CMOS implementation
 - fully integrated
 - high bandwidth

 4 Mishali et al., "Xampling: Analog to digital at sub-Nyquist rates", '11. 5 Candes et.al. Caltech, DARPA

Hardware RD alpha board at SparSig

- Early prototype, not very reliable
- ► Low-Pass filter on the module
- External DAQ unit for ADC/DAC (National Instruments)

Introduction Compressive Sensing Motivation

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

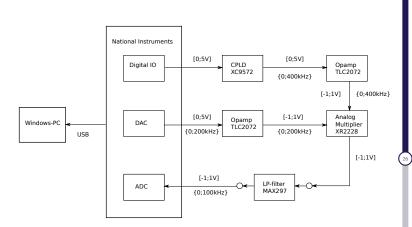
Hardware perspective

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Hardware RD alpha board schematic



Implementation Aspects of the Random Demodulator for Compressive Sensing

Compressive Sensing Motivation Problem statement Analog Compressed

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Single-Pixel Camera Compressed Sensing in Imaging

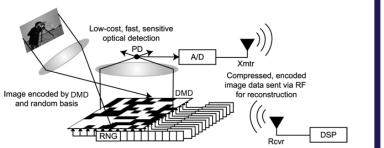


Figure : Compressive Imaging: A New Single-Pixel⁶ Camera⁷.

Rice University

Digital Signal Processing Group, Kelly Lab Department of Electrical and Computer Engineering.

⁶Duarte et al., "Single-Pixel Imaging via Compressive Sampling", '08.

⁷image from: http://dsp.rice.edu/cscamera.

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Similarities to random demodulator:

- ▶ Micro-mirror array (MMA) behaves as a chipping sequence.
- Photodiode integrates the light reflected by MMA.

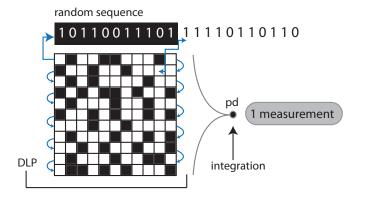


Figure : 1 pixel camera - measurement kernel.

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

Signal recovery can be compromised under following effects:

- ► low-pass filter non ideal response
- ► quantization error⁸
- clock jitter of the ADC
- mixer distortions
- ▶ amplifier nonlinearities (reported in RMPI)
- The algorithms are not designed to consider all hardware non-idealities

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator Measurement matrix

Hardware perspective

Random demodulator nfluenced architectures

Signal recovery and non-ideal effects

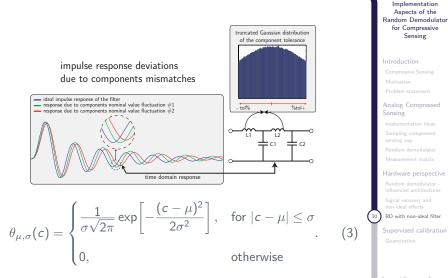
RD with non-ideal filter

Supervised calibration

Quantization

⁸Many new algorithms account for some level of quantization noise

Random demodulator



Filter components deviations

Impulse response error bounds

Implementation Aspects of the

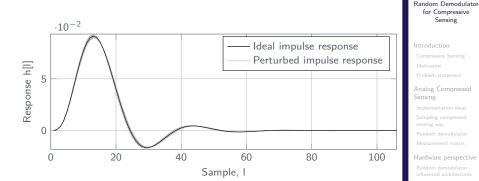


Figure : 2% components deviation in 4th order Butterworth-approximated low-pass filter

Dept. of Electronic Systems, Aalborg University,

57

RD with non-ideal filter

Filter components deviations

Impulse response error bounds

Implementation Aspects of the

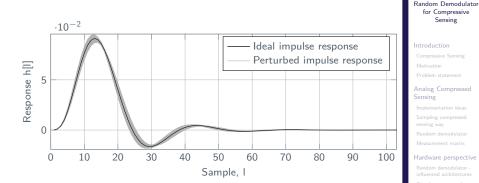


Figure : 5% components deviation in 4th order Butterworth-approximated low-pass filter

> Dept. of Electronic Systems, Aalborg University,

RD with non-ideal filter

Filter components deviations

Impulse response error bounds

Implementation Aspects of the Random Demodulator

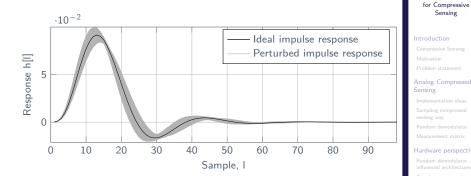


Figure : 10% components deviation in 4th order Butterworth-approximated low-pass filter

> Dept. of Electronic Systems, Aalborg University,

RD with non-ideal filter

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing Motivation

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

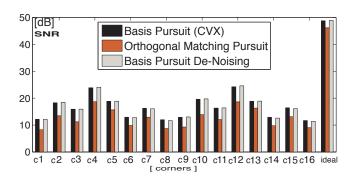
RD with non-ideal filter

Supervised calibration Quantization

Dept. of Electronic Systems, Aalborg University,

MATLAB framework designed to test filter non-idealities Simulations of the RD reconstruction sensitivity to filter tolerances with fixed input and chipping sequence

- Deterministic
 - Test deviation of one filter component at a time with other components assumed ideal
 - ► For low filter orders simulate all worst case combinations (corners)
- Stochastic
 - Test Monte-Carlo simulations with all filter components varying according to truncated Gaussian distribution of the filter components variations



- ▶ 16 corner tolerance values
- 4th order Butterworth filter
- ▶ BP, BPDN and OMP benchmarked
- ▶ 5% and 10% components deviation

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas Sampling compressed

Random demodulator

Hardware perspective

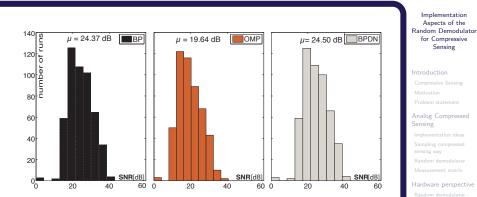
Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Monte Carlo with only 1-component deviation



- ► 500 Monte Carlo runs
- ► 4th order Butterworth filter
- ▶ BP, BPDN and OMP benchmarked
- ▶ 5% and 10% components deviation

Dept. of Electronic Systems, Aalborg University,

RD with non-ideal filter

AALBORG UNIVERSITY

Single component variation influence

Monte Carlo simulation parameters

- ► 1000 Monte Carlo runs
- ▶ 4th order Butterworth filter
- BPDN reconstruction
- ▶ Up to 2% deviation in component

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

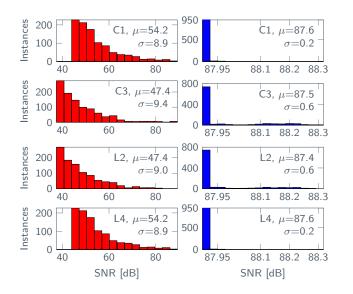
Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Single component variation influence



Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

- Compressive Sensing
- Motivation
- Problem statemer

Analog Compressed Sensing

- Implementation ideas Sampling compressed sensing way
- Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

⁹Supervised calibration

Quantization

57

Dept. of Electronic Systems, Aalborg University,

System identification

- discrete Fourier transform trigonometric interpolation (DFTTI)
 - used to calibrate RMPI

AALBORG UNIVERSITY DENMARK

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

- Compressive Sensing
- Problem statemer

Analog Compressed Sensing

- Implementation ideas Sampling compressed sensing way
- Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

⁹)Supervised calibration

Quantization

57

Dept. of Electronic Systems, Aalborg University,

System identification

- discrete Fourier transform trigonometric interpolation (DFTTI)
 - used to calibrate RMPI
 - ► CS sample stream of N − 1 signals of length N (frequency sweep)

AALBORG UNIVERSITY DENMARK

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

- Compressive Sensing
- Motivation
- Problem statemen

Analog Compressed Sensing

- Implementation ideas Sampling compressed sensing way
- Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Dept. of Electronic Systems, Aalborg University,

System identification

- discrete Fourier transform trigonometric interpolation (DFTTI)
 - used to calibrate RMPI
 - ► CS sample stream of N − 1 signals of length N (frequency sweep)
 - very accurate

AALBORG UNIVERSITY DENMARK

System identification

- discrete Fourier transform trigonometric interpolation (DFTTI)
 - used to calibrate RMPI
 - ► CS sample stream of N 1 signals of length N (frequency sweep)
 - very accurate
 - no initial model needed

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

- Compressive Sensing
- Deelelens stateme

Analog Compressed Sensing

- Implementation ideas Sampling compressed sensing way
- Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

⁹)Supervised calibration

Quantization

Implementation Aspects of the Random Demodulator

System identification

- discrete Fourier transform trigonometric interpolation (DFTTI)
 - used to calibrate RMPI
 - ► CS sample stream of N − 1 signals of length N (frequency sweep)
 - very accurate
 - no initial model needed
- requires $M \times (N-1)$ samples!

Introduction

- Compressive Sensing
- Motivation
- Problem statemen

Analog Compressed Sensing

- Implementation ideas Sampling compressed sensing way
- Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

⁹)Supervised calibration

Quantization

Dept. of Electronic Systems, Aalborg University,

for Compressive Sensing Assuming additive error in the discrete impulse response model:

$$H_{real} = H + E$$

Error matrix

$$\mathbf{E} = \begin{bmatrix} e[0] & 0 & 0 & \dots & \dots & 0 \\ e[1] & e[0] & 0 & \ddots & & \vdots \\ e[2] & e[1] & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 & 0 \\ \vdots & & \ddots & e[1] & e[0] & 0 \\ e[N-1] & \dots & \dots & e[2] & e[1] & e[0] \end{bmatrix}, \in \mathbb{R}^{N \times N}$$
(5)

Implementation Aspects of the Random Demodulator for Compressive Sensing

(4)

Compressive Sensing

Wotivation

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

)Supervised calibration

Quantization

57

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation Problem statement Analog Compressed

(7) (8)

(9)

(10)

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Dept. of Electronic Systems, Aalborg University,

$$\mathbf{y}_{\mathrm{real}} = \mathbf{\Phi}_{\mathrm{real}} \mathbf{x}_{\mathrm{in}}$$

$$\mathbf{y}_{\textit{real}} = \mathbf{y} + \mathbf{BEPx}_{\mathrm{ir}}$$

► Ideal measurements (calculated)
$$\mathbf{y} = \Phi \mathbf{x}_{in}$$

Model discrepancy

$$\mathbf{y}_{\mathrm{real}} - \mathbf{y} = \mathbf{BEPx}_{\mathrm{in}}$$

 \blacktriangleright The roles of E and \textbf{x}_{in} can be interchanged as follows:

$$BEPx_{in} = De$$

where:

$$\mathbf{D} = \begin{bmatrix} d[1] & \dots & d[L] \\ d[R+1] & \dots & d[R+L] \\ d[2R+1] & \dots & d[2R+L] \\ \vdots & & \dots \\ d[N-L+1] & \dots & d[N] \end{bmatrix} \in \mathbb{R}^{M \times L}.$$
(12)

- ▶ consists of the input signal mixed with the chipping sequence
- ▶ when L > R, D truncating its first L/R rows and discarding the first L/R measurements of y_{real}
- $L/R \in \mathbb{Z}$

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

(11)

Compressive Sensing

Activation

Analog Compressed

ensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

²)Supervised calibration

Quantization

Calibration principle Least squares error estimation

$$\mathsf{D} \, \mathsf{e} = \mathsf{y}_{\mathrm{real}} - \mathsf{y}.$$

Least squares estimation

$$\underset{\mathbf{e}\in\mathbb{R}^{L\times 1}}{\text{minimize}} \|\mathbf{D}\mathbf{e}-\mathbf{y}_{\mathbf{d}}\|_{2}^{2},$$

LS Tikhonov regularization

$$\begin{array}{ll} \underset{\mathbf{e} \in \mathbb{R}^{L \times 1}}{\text{minimize}} & \|\mathbf{D}\mathbf{e} - \mathbf{y}_{\mathbf{d}}\|_2^2 \\ \text{subject to} & \|\mathbf{G}\mathbf{e}\|_2^2 \leq \gamma, \end{array}$$

Implementation Aspects of the Random Demodulator for Compressive Sensing

(13)

(14)

(15)

Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Calibration performance

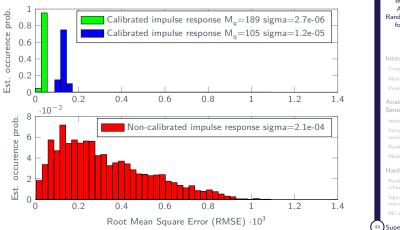


Figure : 2% components deviation, 3000 cases, L = 108, $M_{\rm q1}=189$ and $M_{\rm q2}=105,~{\rm K}=10$

DENMARK Implementation Aspects of the Random Demodulator for Compressive

Sensing

UNIVEDSITY

Motivation Problem statement Analog Compressed Sensing

Sampling compressed sensing way

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

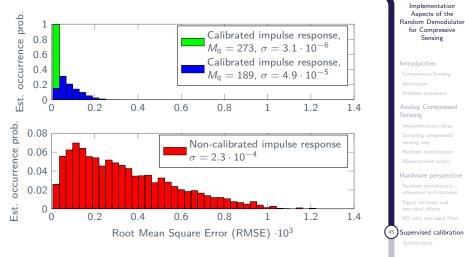
Signal recovery and non-ideal effects

RD with non-ideal filter

⁴)Supervised calibration

Quantization

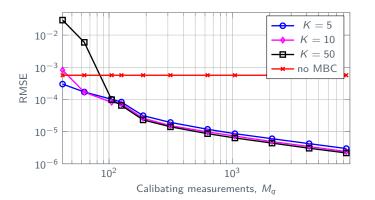
Calibration performance Monte Carlo simulation - Chebyshev

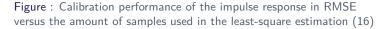


Dept. of Electronic Systems, Aalborg University,

Sensing

Calibration performance Monte Carlo simulation - Butterworth





Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation

Problem statemer

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator nfluenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

⁶)Supervised calibration

Quantization

Calibration performance

Reconstrucion quality [dB] 100 and a construction of the second state of the second state of the second state of the يعيله بليها اللبان ويبيقا المكامية والمناقلة الشنيانية المتعادية واللبانية 80 Φ_{MBC} Φ 60 Φ_{DFTTI} 40 20 200 400 600 800 1000 10^{-1} h_c · RMSE 10^{-8} 10^{-15} 200 400 600 800 1000 Sorted filter cases in ascending order of RMSE

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

7)Supervised calibration

Quantization

57

Implementation Aspects of the Random Demodulator for Compressive Sensing

More realistic scenario

- ▶ What happens when we include quantization ?
- e.g., 4 bit uniform quantizer
- ► We have only preliminary results

Introduction

- Compressive Sensing
- Motivation
- Problem statemer

Analog Compressed Sensing

- Implementation ideas Sampling compressed sensing way
- Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Calibration with quantization included

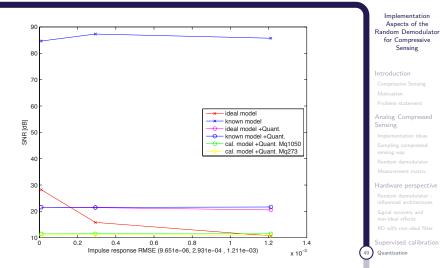


Figure : Reconstruction quality in RD with quantization

Calibration with quantization included Results: estimated impulse error

Implementation 10⁻¹ Aspects of the Random Demodulator Ð for Compressive Sensing 10⁻² 10-3 Analog Compressed Ma1050 +a RMSE [] Ma273 +a - Mq1050 - Ma273 10 10⁻⁶ 10 0.2 0.4 0.6 0.8 1.2 0 1.4 Impulse response RMSE (9.651e-06, 2.931e-04, 1.211e-03) x 10⁻³ Quantization

Figure : Calibration error with quantization

Dept. of Electronic Systems, Aalborg University,

57

Calibration principle and regularization

Implementation Aspects of the Random Demodulator for Compressive Sensing

Least squares estimation

$$\underset{\mathbf{e}\in\mathbb{R}^{L\times 1}}{\operatorname{minimize}} \|\mathbf{D}\mathbf{e}-\mathbf{y}_{\mathsf{d}}\|_{2}^{2},$$

Least squares regularized

 $\begin{array}{ll} \underset{e \in \mathbb{R}^{L \times 1}}{\text{minimize}} & \| \textbf{D} \textbf{e} - \textbf{y}_{\textbf{d}} \|_2^2 \\ \text{subject to} & \textbf{e} \leq \text{UpperImpulseErrorBound}, \\ & \textbf{e} > \text{LowerImpulseErrorBound}, \end{array}$

(16)

(17)

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Measurement matrix

Hardware perspective

Random demodulator nfluenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

LS estimation Under quantization (4 bit)

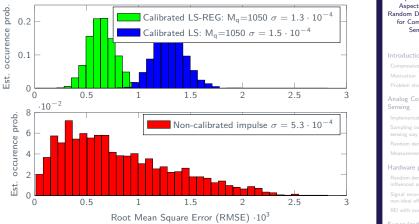


Figure : RMSE histogram - iRMSE (8.086e-04) vs. cRMSER (1.759e-03) vs. cRMSEnR (2.035e-02)

Implementation Aspects of the Random Demodulator for Compressive Sensing

AALBORG UNIVERSITY DENMARK

Analog Compressed

Quantization

LS estimation Under quantization (4 bit)

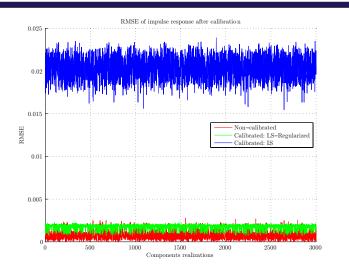


Figure : RMSE case-by-case

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration Quantization

Dept. of Electronic Systems, Aalborg University,

57

LS estimation Under quantization (4 bit)

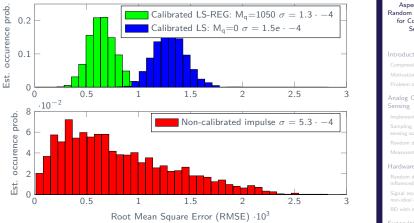


Figure : RMSE histogram - iRMSE (8.086e-04) vs. cRMSER (6.596e-04) vs. cRMSEnR (1.288e-03)

Implementation Aspects of the Random Demodulator for Compressive Sensing

Problem statement Analog Compressed Sensing

Sampling compressed sensing way

Measurement matrix

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration Quantization

LS estimation Under quantization (8 bit)

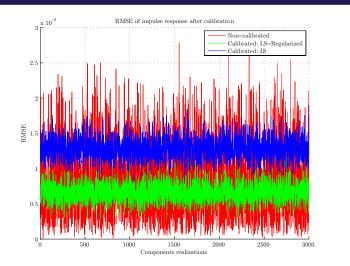


Figure : RMSE case-by-case

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction Compressive Sensing Motivation Problem statement

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Thank you! Contact Information

Implementation Aspects of the Random Demodulator for Compressive Sensing

Introduction

Compressive Sensing

Motivation

Problem statemen

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

Dept. of Electronic Systems, Aalborg University,

Pawel Jerzy Pankiewicz pjp@es.aau.dk @pawelpankiewicz Niels Jernes Vej 12, A6-112 9220 Aalborg Ø www.sparsesampling.com

Implementation Aspects of the Random Demodulator for Compressive Sensing

Compressive Se

Motivation

Analog Compressed Sensing

Implementation ideas Sampling compressed sensing way

Random demodulator

Hardware perspective

Random demodulator influenced architectures

Signal recovery and non-ideal effects

RD with non-ideal filter

Supervised calibration

Quantization

57

57

Dept. of Electronic Systems, Aalborg University,

Questions?

www.sparsesampling.com