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Classic sampling
How do we discretize signals

I Classic Nyquist sampling:

x(t)

{xn}
t

x

x =


x0...
xN



I T < 1
2·B

I Nyquist criteria applies into worst case scenarios.
I Usually: we sample a lot of data, but throw most of it away

(JPEG, MP3).
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Compressed Sensing
What is it?

I New signal acquisition/compression theory from around 2004.
I Combines sampling and compression of signals.

“CS theory asserts that one can recover certain signals and images
from far fewer samples or measurements than traditional methods
use.”1

1Candès and Wakin, “An Introduction To Compressive Sampling”, ’08’.
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Compressed Sensing
Requirements

The signal must be sparse in a known dictionary:

sparsedictionary

=·

original

vector x
vector αmatrix Ψ signal
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Compressed Sensing
Acquisition

compression compressed

=·

original
matrix Φ

vector x
vector ysignal

I The signal vector is mixed with a measurement matrix before
sampling.

I Sample the (fewer) mixed “measurements”.



57

Implementation
Aspects of the

Random Demodulator
for Compressive

Sensing

Introduction
6 Compressive Sensing

Motivation

Problem statement

Analog Compressed
Sensing
Implementation ideas

Sampling compressed
sensing way

Random demodulator

Measurement matrix

Hardware perspective
Random demodulator -
influenced architectures

Signal recovery and
non-ideal effects

RD with non-ideal filter

Supervised calibration
Quantization

Dept. of Electronic Systems,
Aalborg University,

Compressed Sensing
Acquisition

compression compressed

=·

original
matrix Φ

vector x
vector ysignal

I The signal vector is mixed with a measurement matrix before
sampling.

I Sample the (fewer) mixed “measurements”.



57

Implementation
Aspects of the

Random Demodulator
for Compressive

Sensing

Introduction
6 Compressive Sensing

Motivation

Problem statement

Analog Compressed
Sensing
Implementation ideas

Sampling compressed
sensing way

Random demodulator

Measurement matrix

Hardware perspective
Random demodulator -
influenced architectures

Signal recovery and
non-ideal effects

RD with non-ideal filter

Supervised calibration
Quantization

Dept. of Electronic Systems,
Aalborg University,

Compressed Sensing
Acquisition

compression compressed

=·

original
matrix Φ

vector x
vector ysignal

I The signal vector is mixed with a measurement matrix before
sampling.

I Sample the (fewer) mixed “measurements”.



57

Implementation
Aspects of the

Random Demodulator
for Compressive

Sensing

Introduction
7 Compressive Sensing

Motivation

Problem statement

Analog Compressed
Sensing
Implementation ideas

Sampling compressed
sensing way

Random demodulator

Measurement matrix

Hardware perspective
Random demodulator -
influenced architectures

Signal recovery and
non-ideal effects

RD with non-ideal filter

Supervised calibration
Quantization

Dept. of Electronic Systems,
Aalborg University,

Compressed Sensing
The Reconstruction Principle

sparsedictionary reconstructedcompressed

==· ·

original

vector x
vector y

vector x̂
vector αmatrix Ψ

optimization-based reconstruction

signal signal
compression

matrix
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Digital device
Option 1

Figure : Traditional (Nyquist) Sampling
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Digital device
Option 2

Figure : Digital Compressed Sensing
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Digital device
Option 3

Figure : Analog Compressed Sensing
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Motivation
Overview

Analog front-end is an energy bottleneck
I Inevitable analog-to-digital conversion
I Power consumption – mainly dictated by the sampling

frequency
I Need to sample according to Nyquist rate

Implementing analog compressed sensing
I Digital Signal Processors – are now highly capable
I Trade analog processing over digital processing
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Problem statement
All things digital

=

y x

.M 

N 

N 

compressed
vector

signal

compression

Figure : Discrete model of compressed sensing

I But how to deal with analog signals ?
I Analog signal has infinite dimension
I How to obtain compressed vector ?
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Problem statement
Does analog CS just work?

I We need a model of an analog front-end in the measurement
matrix

I Undesired hardware effects are unavoidable in the
implementation.

I Static and dynamic hardware changes.

I Turns out that compressed sensing signal reconstruction
methods do not account for many non-idealities.
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How to implement compressed sensing
Following the digital model

Sample input and apply CS processing
Initially we can digitalize the signal using an analog-to-digital
converter (ADC)

I Sample the signal with the Nyquist rate

I Apply compressed sensing to a digitized signal
I Obtain reconstructed signal

Why this is a bad approach ?

I We sample with the Nyquist frequency
I No power consumption reduction

There are no benefits
I We perform only unnecessary and energy consuming signal

processing
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How to implement compressed sensing
Analog-to-information converter - the model we need

DSP

recovery
y
y
y

y
.
.
.

M

2

3

1

sample and compress
kernel

Figure : Compressed sensing scheme

I y = ΦΨx, y(M × 1); Φ(M × N); Ψ(N × N)

We need an analog compression kernel that:

I provides non-adaptive linear projections of the analog input
I complies with a RIP and incoherence requirements
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I y = ΦΨx, y(M × 1); Φ(M × N); Ψ(N × N)

We need an analog compression kernel that:
I provides non-adaptive linear projections of the analog input

I complies with a RIP and incoherence requirements
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Sampling compressed sensing way
Simplest approach

Taking random samples with sub-Nyquist rate
I We decrease sampling frequency

I Our compression mechanism is incoherent with some of the
sparse basis

I It is possible to model analog front-end (our encoder) in the
DSP and perform reconstruction

Disadvantages ?

I performing random sampling brings a certain amount of
imperfections

I aperture jitter increases due to nonuniform clock usage
I overall sampling frequency is decreased but we still might

need high sampling grid
I modeling the front-end by measurement matrix might be

difficult
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Random demodulator
Overview

chipping sequence

Analog filter ADC

seed y

y

y

1

2

M

1 2 3

Figure : Random demodulator architecture2

1. demodulation
2. low-pass filtering (integration)
3. low-rate sampling

2Kirolos et al., “Analog-to-Information Conversion via Random Demodulation”, ’06.
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Random demodulator
Overview

chipping sequence

Analog filter ADC

seed y

y

y
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2

M

1 2 3

Figure : Random demodulator architecture2

1. demodulation
I mixing the signal with the pseudo-random sequence called

the chipping sequence (e.g., [+1/-1])
I frequency of the sequence > Nyquist frequency of the input

2Kirolos et al., “Analog-to-Information Conversion via Random Demodulation”, ’06.
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Random demodulator
Overview

chipping sequence

Analog filter ADC

seed y

y

y

1

2

M

1 2 3

Figure : Random demodulator architecture2

2. low-pass filtering
I anti-aliasing operation prior to the low-rate sampling
I in respect to sampling frequency we set properly cut-off

frequency fcut

2Kirolos et al., “Analog-to-Information Conversion via Random Demodulation”, ’06.
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Random demodulator
Overview

chipping sequence

Analog filter ADC

seed y

y

y

1

2

M

1 2 3

Figure : Random demodulator architecture2

3. low-rate sampling
I sampling the signal using analog-to-digital converter
I sampling frequency has to be higher than 2× fcut

2Kirolos et al., “Analog-to-Information Conversion via Random Demodulation”, ’06.
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Operations
How they might look like

MATLAB DEMO

Source code available at:
http://sparsesampling.com/pawelpankiewicz/rd

http://sparsesampling.com/pawelpankiewicz/rd
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Random demodulation
Once again - let us recall the model

DSP

recovery

y
y
y

y
.
.
.

M

2

3

1

chipping sequence

Analog filter ADC

seed

1 2 3

I y = ΦΨx, y(M × 1); Φ(M × N); Ψ(N × N)

"Analog-to-Information Conversion via Random Demodulation"3

3Kirolos et al., “Analog-to-Information Conversion via Random Demodulation”, ’06.
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Measurement matrix
How do we model our compressing kernel

�lter impulse response h(t) pn sequence

ts

...

multiply

multiply

Y1

Y2

Y7

.

.

.

1 measurement

We need precise discrete models of:
I impulse response of the low-pass filter
I chipping sequence mixed with the signal
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Measurement matrix
How do we model our compressing kernel

We can construct Φ from 3 sub-matrices
I impulse response matrix:

H =



h[0] h[−1] h[−2] . . . . . . h[−N + 1]

h[1] h[0] h[−1]
. . .

...

h[2] h[1]
. . . . . . . . .

...
...

. . . . . . . . . h[−1] h[−2]
...

. . . h[1] h[0] h[−1]
h[N − 1] . . . . . . h[2] h[1] h[0]


, (1)

I where h = [ h[0], . . . , h[L− 2], h[L− 1] ]T ∈ RL×1 represents
L ≤ N consecutive impulse response samples.
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Measurement matrix
How do we model our compressing kernel

I sampling matrix:

B =
M⊕

m=1
κ, ∈ {0, 1}M×N , (2)

where κ ∈ {0, 1}1×R such that:

κ[n] =
{
1, for n = 1
0, otherwise

,

⊕
denotes direct matrix sum.

I pseudo-random sequence matrix:

P = diag{p[1], . . . , p[N]}.
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Measurement matrix
Reconstruction stage

compressed
samples

digital recovery

impulse
response

chipping
 sequence dictionary

reconstruction algorithm 

analog front-end
digital models

sub-
sampling

Ψ

Φ

B H P

y α

Figure : Information required for successful signal recovery
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Existing CS architectures
Influenced by random demodulator scheme

A lot of new architectures that share RD-like analog front-end -
INSPIRED

I Modulated Wideband Converter4

I Random-Modulation Pre-Integrator - RMPI
5

I CMOS implementation
I fully integrated
I high bandwidth

4Mishali et al., “Xampling: Analog to digital at sub-Nyquist rates”, ’11.
5Candes et.al. Caltech, DARPA
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Hardware
RD alpha board at SparSig

I Early prototype, not very reliable
I Low-Pass filter on the module
I External DAQ unit for ADC/DAC (National Instruments)
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Hardware
RD alpha board schematic

National Instruments

Digital IO

DAC

ADC

Opamp
TLC2072

CPLD
XC9572

Opamp
TLC2072

Analog
Multiplier
XR2228

LP-filter
MAX297

[0;5V] [0;5V]

[0;5V] [-1;1V]

[-1;1V]

[-1;1V]

{0;400kHz}

{0;400kHz}

{0;200kHz} {0;200kHz}

{0;100kHz}

[-1;1V]

Windows-PC

USB
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Single-Pixel Camera
Compressed Sensing in Imaging

Figure : Compressive Imaging: A New Single-Pixel6 Camera7.

Rice University
Digital Signal Processing Group, Kelly Lab Department of
Electrical and Computer Engineering.

6Duarte et al., “Single-Pixel Imaging via Compressive Sampling”, ’08.
7image from: http://dsp.rice.edu/cscamera.

http://dsp.rice.edu/cscamera
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Single-Pixel Camera
How Does it Work?

Similarities to random demodulator:
I Micro-mirror array (MMA) – behaves as a chipping sequence.
I Photodiode – integrates the light reflected by MMA.

1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0

pd
1 measurement

integrationDLP

random sequence

Figure : 1 pixel camera - measurement kernel.
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Random demodulator
Non-ideal effects

Signal recovery can be compromised under following effects:
I low-pass filter non ideal response
I quantization error8

I clock jitter of the ADC
I mixer distortions
I amplifier nonlinearities (reported in RMPI )

I The algorithms are not designed to consider all hardware
non-idealities

8Many new algorithms account for some level of quantization noise
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Random demodulator
filter tolerances

ideal impulse response of the filter
response due to components nominal value fluctuation #1
response due to components nominal value fluctuation #2

time domain response

L1 L2

C1 C2

- tol% %tol+

truncated Gaussian distribution
of the component tolerance

impulse response deviations
due to components mismatches

θµ,σ(c) =


1

σ
√
2π

exp
[
− (c − µ)2

2σ2

]
, for |c − µ| ≤ σ

0, otherwise

. (3)



57

Implementation
Aspects of the

Random Demodulator
for Compressive

Sensing

Introduction
Compressive Sensing

Motivation

Problem statement

Analog Compressed
Sensing
Implementation ideas

Sampling compressed
sensing way

Random demodulator

Measurement matrix

Hardware perspective
Random demodulator -
influenced architectures

Signal recovery and
non-ideal effects

31 RD with non-ideal filter

Supervised calibration
Quantization

Dept. of Electronic Systems,
Aalborg University,

Filter components deviations
Impulse response error bounds
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0

5
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Ideal impulse response
Perturbed impulse response

Figure : 2% components deviation in 4th order
Butterworth-approximated low-pass filter
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Filter components deviations
Impulse response error bounds
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Figure : 5% components deviation in 4th order
Butterworth-approximated low-pass filter
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Filter components deviations
Impulse response error bounds
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Figure : 10% components deviation in 4th order
Butterworth-approximated low-pass filter
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Sensitivities of the Random Demodulator

MATLAB framework designed to test filter non-idealities
Simulations of the RD reconstruction sensitivity to filter
tolerances with fixed input and chipping sequence

I Deterministic
I Test deviation of one filter component at a time with other

components assumed ideal
I For low filter orders simulate all worst case combinations

(corners)

I Stochastic
I Test Monte-Carlo simulations with all filter components

varying according to truncated Gaussian distribution of the
filter components variations
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Sensitivities of the Random Demodulator
Simulation results
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I 16 - corner tolerance values
I 4th order Butterworth filter
I BP, BPDN and OMP benchmarked
I 5% and 10% components deviation
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Sensitivities of the Random Demodulator
Monte Carlo with only 1-component deviation
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I 500 Monte Carlo runs
I 4th order Butterworth filter
I BP, BPDN and OMP benchmarked
I 5% and 10% components deviation
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Sensitivities of the Random Demodulator
Single component variation influence

Monte Carlo simulation parameters
I 1000 Monte Carlo runs
I 4th order Butterworth filter
I BPDN reconstruction
I Up to 2% deviation in component
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Sensitivities of the Random Demodulator
Single component variation influence
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Supervised calibration
Black-box approach

System identification
I discrete Fourier transform trigonometric interpolation

(DFTTI)
I used to calibrate RMPI

I CS sample stream of N − 1 signals of length N (frequency
sweep)

I very accurate
I no initial model needed

I requires M × (N − 1) samples!
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Model-based calibration
Impulse response error

I Assuming additive error in the discrete impulse response
model:

Hreal = H+ E (4)

Error matrix

E =



e[0] 0 0 . . . . . . 0

e[1] e[0] 0
. . .

...

e[2] e[1]
. . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . e[1] e[0] 0
e[N − 1] . . . . . . e[2] e[1] e[0]


,∈ RN×N (5)

e = hreal − h (6)
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Model-based calibration
Finding modeled impulse response error

I Real compressed measurements
yreal = Φrealxin (7)

yreal = y+ BEPxin (8)

I Ideal measurements (calculated)
y = Φxin (9)

I Model discrepancy
yreal − y = BEPxin. (10)
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Model-based calibration
Finding modeled impulse response error

I The roles of E and xin can be interchanged as follows:
BEPxin = De (11)

where:

D =


d [1] . . . d [L]

d [R + 1] . . . d [R + L]
d [2R + 1] . . . d [2R + L]

... . . .
d [N − L + 1] . . . d [N]

 ∈ RM×L. (12)

I consists of the input signal mixed with the chipping sequence
I when L > R, D truncating its first L/R rows and discarding

the first L/R measurements of yreal

I L/R ∈ Z
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Calibration principle
Least squares error estimation

I Equation (10) can be further rewritten using (11) to the
following form:

De = yreal − y. (13)

Least squares estimation

minimize
e∈RL×1

‖De− yd‖22, (14)

LS Tikhonov regularization

minimize
e∈RL×1

‖De− yd‖22
subject to ‖Ge‖22 ≤ γ,

(15)
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Calibration performance
Monte Carlo simulation - Butterworth
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Figure : 2% components deviation, 3000 cases, L = 108, Mq1 = 189
and Mq2 = 105, K = 10
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Calibration performance
Monte Carlo simulation - Chebyshev
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46 Supervised calibration
Quantization

Dept. of Electronic Systems,
Aalborg University,

Calibration performance
Monte Carlo simulation - Butterworth
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Figure : Calibration performance of the impulse response in RMSE
versus the amount of samples used in the least-square estimation (16)
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Calibration performance
DFTTI benchmark
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LS estimation
Under quantization

More realistic scenario
I What happens when we include quantization ?
I e.g., 4 bit uniform quantizer

I We have only preliminary results
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Calibration with quantization included
Results: reconstruction
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Figure : Reconstruction quality in RD with quantization
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Aalborg University,

Calibration with quantization included
Results: estimated impulse error
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Figure : Calibration error with quantization
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Dept. of Electronic Systems,
Aalborg University,

Calibration principle and regularization
Impulse response matrix error

Least squares estimation

minimize
e∈RL×1

‖De− yd‖22, (16)

Least squares regularized

minimize
e∈RL×1

‖De− yd‖22
subject to e ≤ UpperImpulseErrorBound,

e > LowerImpulseErrorBound,
(17)
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LS estimation
Under quantization (4 bit)
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Figure : RMSE histogram - iRMSE (8.086e-04) vs. cRMSER
(1.759e-03) vs. cRMSEnR (2.035e-02)
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LS estimation
Under quantization (4 bit)
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LS estimation
Under quantization (4 bit)
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Figure : RMSE histogram - iRMSE (8.086e-04) vs. cRMSER
(6.596e-04) vs. cRMSEnR (1.288e-03)
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LS estimation
Under quantization (8 bit)
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Figure : RMSE case-by-case



57

Implementation
Aspects of the

Random Demodulator
for Compressive

Sensing

Introduction
Compressive Sensing

Motivation

Problem statement

Analog Compressed
Sensing
Implementation ideas

Sampling compressed
sensing way

Random demodulator

Measurement matrix

Hardware perspective
Random demodulator -
influenced architectures

Signal recovery and
non-ideal effects

RD with non-ideal filter

Supervised calibration
56 Quantization

Dept. of Electronic Systems,
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Thank you!
Contact Information

Pawel Jerzy Pankiewicz
pjp@es.aau.dk
@pawelpankiewicz

Niels Jernes Vej 12, A6-112
9220 Aalborg Ø

www.sparsesampling.com

mailto:pjp@es.aau.dk
https://twitter.com/pawelpankiewicz


57

Implementation
Aspects of the

Random Demodulator
for Compressive

Sensing

Introduction
Compressive Sensing

Motivation

Problem statement

Analog Compressed
Sensing
Implementation ideas

Sampling compressed
sensing way

Random demodulator

Measurement matrix

Hardware perspective
Random demodulator -
influenced architectures

Signal recovery and
non-ideal effects

RD with non-ideal filter

Supervised calibration
57 Quantization

Dept. of Electronic Systems,
Aalborg University,

Thank you!

Questions?

www.sparsesampling.com
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