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• Thesis: “Matrix Designs and Methods for Secure and Efficient Compressed Sensing”. 

• Sensing matrix adaptation for Compressed Sensing of (wide-sense cyclostationary) 
correlated and compressible signals (e.g., ECG). 

• Security analysis of Compressed Sensing: statistical and computational attacks; 
application-level analysis for private tele-monitoring (e.g., ECG). 

• Design of a compressive hyperspectral imager (joint with IMEC and UCLouvain, BE). 

• Postdoctoral researcher (mid-2015 - now; under FRS-FNRS Project 
“AlterSense”; P.I.: Prof. L. Jacques), UCLouvain, BE. 

• Blind calibration via non-convex optimisation (e.g., for unmatched compressive 
sensor arrays). 

• Compressive classification with quantisation: theory and prospective applications.
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• Introduction: from Compressed Sensing to Compressive Classification 

• Compressive classification of finite sets (from M. Davenport et al., 2010) 

• Random matrices and stable embeddings 

• Compressive classification via p-ary hypothesis testing 

• Compressive classification of disjoint convex sets (from A. Bandeira et al., 2014) 

• Compressive classification of linearly separable classes 

• The Gaussian width of a set: a measure of “intrinsic complexity” 

• “Escape through a mesh”: Gordon’s theorem 

• Minimum projection rank (for linear separability) 

• The case of two disjoint Euclidean balls 

• The case of two disjoint ellipsoids 

• A comparison with PCA: adaptive versus non-adaptive dimensionality reduction 

• Conclusion
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Introduction

• Compressed Sensing (CS), ca. 2005: a mature framework [1] for non-adaptive 
acquisition of analog signals (“analog-to-information conversion”). 

• The sensing interface is implemented and modelled as a dimensionality reduction 
w.r.t. the n-dim. Nyquist-rate representation x of an analog signal. 

• From the m-dim. compressive measurements y = A x , recover an approximation 
by means of an optimisation algorithm enforcing a low-complexity (low-
dimensional) prior model,         . Example: k-sparse signals,                  . 

• If x complies with such prior model (and its complexity is sufficiently low, e.g., 
very sparse), then exact signal recovery is possible.
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Introduction

• Is (exact) signal recovery really required?  

• If signal processing in the digital domain amounts to detection, estimation, 
classification or filtering, can we perform analogous operations on y rather 
than x with compatible results?
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Compressive Classification

• With which accuracy can we perform classification in the compressed domain ? 
How does m affect the classification error? 

• How does a random matrix A differ w.r.t. classical dimensionality reduction 
(e.g., PCA)? (A is a non-adaptive, universal dimensionality reduction method.) 

• What models of x can be provably classified with high probability in the 
compressed domain? 

• Finite sets [3,4], disjoint spheres and ellipsoids [5], mixtures of sufficiently 
separated Gaussians [6,7], …

6

Compressive  
classification

Classification-
preservation 
conditions

(More general) 
Signal model

Supervised learning, 
clustering, etc.

�
y Label, learned 

mixture model, 
etc.

A



Stable Embeddings and Random Matrices

• The classic framework of CS leverages stable embeddings to construct distance-
preserving mappings w.r.t. the chosen signal set (i.e., RIP for sparse signals [8]). 

• The following Definition and Lemma summarise Johnson-Lindenstrauss [9], 
consequent proofs and applications [10,11] in the fashion of [3,8].
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then A is a "-stable embedding of S with probability 1� ⌘.

Lemma (Johnson-Lindenstrauss [9-11]).
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• Using stable embeddings and a standard p-ary hypothesis testing 
framework, Davenport et al. [3] establish a bound on the probability of 
error of a simple compressive classifier. 

• Let                be a set of reference vectors; let             , 

• For y = A x we form p equal-probability hypotheses: 
 
 

• The sufficient statistic for our test is therefore: 
 
 
so we classify y according to the maximum likelihood, i.e. (this case),  
 

• Note that, asymptotically,                     

Compressive Classification of Finite Sets
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Compressive Classification of Finite Sets

• Geometric intuition for n=3, m=2, 
p=3 at minimum distance r and noise 
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Classification Error in Finite Sets

• The above bound is proved in [3] by simple inequalities using: the stable embedding 
assumption; the minimum distance r ; a tail bound of the normal distribution; a union bound.
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Compressive Classification of Finite Sets: Example

• Set n = 1000 and draw p 
= 3 random points in S at 
fixed minimum distance r. 

• Generate random instances 
of (S, x, A, y) according 
to the p-hypotheses model.  

• Classify y with 
 
 
and evaluate              . 

• Note that the noise 
variance fixes:  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Pe(
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i2[p]

ti , i = 1, . . . , p

(Depends on separation 
between the hypotheses.)



Compressive Classification of Linearly Separable Classes

• Assume now that x is drawn from a mixture of classes           . 

• If the classes are not closed convex sets, we take as classes their convex hulls:  

• The classes (or their hulls) are assumed as disjoint closed convex sets, i.e.,                         

• The classes are assumed pairwise linearly separable (by a hyperplane), i.e., 
 
 
 
(This setting strongly reminds linear support vector machines!) 

• We want to assess whether a random projection is capable of preserving linear separability, that 
is assumed as critical event for compressive classification: 
  
 

• This notion is quite different (somewhat loose) w.r.t. stable embeddings. It does not measure 
how the distances between projected points of different classes are distorted as long as their 
separability is maintained.
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The “Rare Eclipse” Problem
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The “Rare Eclipse” Problem
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The “Rare Eclipse” Problem
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Problem (Rare Eclipse [5]).
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The “Rare Eclipse” Problem

• Let’s elaborate this requirement:  
 

• Define the Minkowski difference of the two sets: 
 

• Thus: 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The “Rare Eclipse” Problem

• Finally, since Null(A) is closed w.r.t. scalar multiplication, we can take the smallest 
cone that contains the Minkowski difference, i.e.,  
 

• Thus, the problem is mapped to evaluating the probability that  
 
 
that is the probability that Null(A) “avoids” the above cone. 

• We need a notion of “size” to measure the probability of this event. 

• Analogous concept in sparse signal recovery literature: the null space property [12].
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The Gaussian Width of a Set
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Let g ⇠ N (0n, In); the Gaussian (mean) width of a set K ⇢ Rn is

w(K) = E
g
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w(K) is invariant under translations, orthogonal transformations, and convex hulls

of the set K.

Definition (Gaussian width of a set [2]).
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The Gaussian Width of a Set

• Some relevant examples in the literature [14]: 

• k-sparse signals: 
 

• p-cardinality sets of vectors: 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The Gaussian Width of a Set
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“Escape through a mesh”
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Null(A) ⇢ Gn�mn

Let K ⇢ Sn�1 and g ⇠ N (0m, Im); denote �m = E[kgk2]. If w(K)  �m,
then any uniformly drawn Y 2 Gn�mm satisfies

P [Y \K = ;] � 1� e(�
1
2
(�m�w(K))2)

Theorem (Gordon’s Escape through a Mesh Theorem [13]).

K
C� = Sn�1 \ Ci � Cj (subset of unit sphere of Rn, “mesh”)



Minimum Projection Rank (for linear separability)

• This corollary is simply obtained by taking in Gordon’s Theorem: 
 
 
 
and by fixing the last quantity to an arbitrary probability value. 

• The rest of Bandeira et al. [5] is simply concerned with finding closed-form 
expressions for the Gaussian width of the cone that encloses the Minkowski 
difference of special convex sets. 

• Spheres (simple) and ellipsoids (much harder) lend themselves to this calculation.
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Let Ci , Cj ✓ Rn be disjoint convex sets;

¯C� = Cone(Ci � Cj) \ Sn�1;
w\ = w( ¯C�). Let Am⇥n

i.i.d.⇠ N (0, 1) and ⌘ 2 (0, 1). Then for m � m?,

m? =

✓
w\ +

r
2 log

1

⌘

◆2
+ 1) P [ACi \ ACj = ;] � 1� ⌘

Corollary (“Escape through a Minkowski di↵erence”, Corollary 3.1 in [5]).

Y := Null(A),K := C̄�,�m 
p
m
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1
2
(
p
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The Case of Disjoint Euclidean Balls

• The proof entails showing: 
 

• Since the Gaussian width of the circular cone is known,  
 
 
plugging this into the previous Corollary yields: 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Cone(C1 � C2) ✓ Circ(↵) and Circ(↵) ✓ Cone(C1 � C2)

w2\ = w(Circ(↵) \ Sn�1)2 = n sin2 ↵+O(1)

m? = n
⇣
⇢1+⇢2
ks1�s2k2

⌘2
+O(

p
n)



The Case of Disjoint Euclidean Balls
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The Case of Disjoint Ellipsoids

• A naive approach would be taking the radii as the largest semi-axes (i.e., maximum 
singular values) of the symmetric PSD matrices defining the ellipsoids, i.e., taking the 
smallest balls that enclose them. 

• Implicitly assumes that the bounding balls do not intersect. 

• This would lead to an extremely loose bound. 

• Bandeira et al. [5] take a step further and arrive to the following statement (proof is 
less intuitive):
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Let i = 1, 2,�i 2 Rn⇥n symmetric PSD, Ci = {�ix + s i : x 2 B`2(Rn)} of
centers s i 2 Rn. Then

w\ 
k�1kF + k�2kF

⇣ � (k�1⇠k2 + k�2⇠k2)

where ⇠ = s1�s2
ks1�s2k2 , ⇣ = ks1 � s2k2 > k�1⇠k2 + k�2⇠k2.

Theorem (Gaussian width of C� of two ellipses, Theorem 3.5 in [5]).



The Case of Disjoint Ellipsoids
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Figure 4. Phase transition for a random projection to keep ellipsoids separated. (a) Fixing the

ambient dimension to be N = 40, then for each ⇣ = 1 : 400 and M = 1 : 40, we conducted 10 trials.

For each trial, we randomly drew A1 and A2 as iid standard Wishart-distributed N ⇥N matrices

with N degrees of freedom (i.e., Ai = XX>, where X is N ⇥ N with iid N (0, 1) entries), along

with an M ⇥N matrix P with iid N (0, 1) entries. Plotted is the proportion of trials for which the

ellipsoids are disjoint after applying P (we did not record whether the ellipsoids were separated

before projection). For each of the 160,000 trials, the shape matrices satisfied ⇣  kA1ek2+kA2ek2,
thereby rendering Theorem 3.5 irrelevant. (b) Next, we performed the same experiment, except we

changed the distribution of A1 and A2 so that e is in the null space of both, and in the orthogonal

complement of e, they are iid standard Wishart-distributed (N � 1)⇥ (N � 1) matrices with N � 1

degrees of freedom. As such, the corresponding ellipsoids resided in parallel hyperplanes, and

kA1ek2 + kA2ek2 = 0 so that Theorem 3.5 applies. For each trial, we stored the bound on w\ from

Theorem 3.5 and calculated the sample average of the squares of these bounds corresponding to

each ⇣ = 1 : 400. The red curve plots these sample averages (or 40, whichever is smaller)—think

of this as an upper bound on the phase transition. As one might expect, this bound appears to

sharpen as the distance increases.

bound in a way that permits several ellipsoids to be projected simultaneously using particularly few projected
dimensions.

At this point, we compare Theorem 3.5 to the better understood case of two balls. In this case, A1 = r1I
and A2 = r2I, and so Theorem 3.5 gives that

w\ 
p
N · r1 + r2

kc1 � c2k2 � (r1 + r2)
+

1p
2⇡

.

If we consider the regime in which r1 + r2  1
2kc1 � c2k2, then we recover the case of two balls to within

a factor of 2, suggesting that the analysis is tight (at least in this case). For a slightly more general lower
bound, note that a projection maintains separation between two ellipsoids only if it maintains separation
between balls contained in each ellipsoid. The radius of the largest ball in the ith ellipsoid is equal to the
smallest eigenvalue �min(Ai

) of the shape matrix A
i

, and the center of this ball coincides with the center
c
i

of its parent ellipsoid. As such, we can again appeal to the case of two balls to see that Theorem 3.5 is
reasonably tight for ellipsoids of reasonably small eccentricity �max(Ai

)/�min(Ai

). Closed form bounds for
general ellipses with high eccentricity are unwieldy, but Figure 4 illustrates that our bound is far from tight
when the ellipsoids are close to each other. Still, the bound improves considerably as the distance increases.
As such, we leave improvements to Theorem 3.5 as an open problem (in particular, finding a closed-form
characterization of the phase transition in terms of the c

i

’s and A
i

’s).



A comparison with PCA for mixtures of ellipsoids

29

PCA

Supervised 
(NN)

Gaussian 
RP

Unsupervised 
(K-Means)

Supervised 
(NN)

Unsupervised 
(K-Means)

yx
Training Set

Rn Rm

Non-adaptive
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A comparison with PCA for mixtures of ellipses
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Conclusion

• Emphasis of this talk was on assessing whether it is (theoretically) 
possible to distinguish linearly separable classes after random projection. 

• This ensures that even the simplest classification algorithm will succeed. 

• Ideally, unsupervised learning will yield separated clusters after a non-
adaptive dimensionality reduction. 

• Application: compressive classification “right after” the sensing interface, with 
minimum computational and hardware complexity requirements. 

• Open questions: 

• How does (1 to q)-bit quantisation affect compressive classification? By how 
much the requirements on m will be increased? Can we characterise: 
 

• Study of different models for other disjoint convex sets of interest 

• Application to classification of very high-dimensional (e.g., volumetric) data
31
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