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Thesis: “Matrix Designs and Methods for Secure and Efficient Compressed Sensing’”.

Sensing matrix adaptation for Compressed Sensing of (wide-sense cyclostationary)
correlated and compressible signals (e.g., ECG).

Security analysis of Compressed Sensing: statistical and computational attacks;
application-level analysis for private tele-monitoring (e.g., ECG).

Design of a compressive hyperspectral imager (joint with IMEC and UCLouvain, BE).

Postdoctoral researcher (mid-2015 - now; under FRS-FNRS Project
“AlterSense”; P.l.: Prof. L. Jacques), UCLouvain, BE.

Blind calibration via non-convex optimisation (e.g., for unmatched compressive
sensor arrays).

Compressive classification with quantisation: theory and prospective applications.



Introduction: from Compressed Sensing to Compressive Classification

Compressive classification of finite sets (from M. Davenport et al., 2010)

Random matrices and stable embeddings

Compressive classification via p-ary hypothesis testing
Compressive classification of disjoint convex sets (from A. Bandeira et al., 2014)

Compressive classification of linearly separable classes
The Gaussian width of a set: a measure of “intrinsic complexity”
“Escape through a mesh™: Gordon's theorem
Minimum projection rank (for linear separability)

The case of two disjoint Euclidean balls

The case of two disjoint ellipsoids

A comparison with PCA: adaptive versus non-adaptive dimensionality reduction

Conclusion
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Compressed Sensing (CS), ca. 2005: a mature framework [1] for non-adaptive
acquisition of analog signals (“analog-to-information conversion”).

The sensing interface is implemented and modelled as a dimensionality reduction
w.r.t. the n-dim. Nyquist-rate representation x of an analog signal.

From the m-dim. compressive measurements y = A x , recover an approximation

by means of an optimisation algorithm enforcing a low-complexity (low-
dimensional) prior model, x € K. Example: k-sparse signals, K = >, C R".

If x complies with such prior model (and its complexity is sufficiently low, e.g.,
very sparse), then exact signal recovery is possible.
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Compressed Sensing (CS), ca. 2005: a mature framework [1] for non-adaptive
acquisition of analog signals (“analog-to-information conversion”).

The sensing interface is implemented and modelled as a dimensionality reduction
w.r.t. the n-dim. Nyquist-rate representation x of an analog signal.

From the m-dim. compressive measurements y = A x , recover an approximation

by means of an optimisation algorithm enforcing a low-complexity (low-
dimensional) prior model, x € K. Example: k-sparse signals, K = >, C R".

If x complies with such prior model (and its complexity is sufficiently low, e.g.,
very sparse), then exact signal recovery is possible.
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Proposition (Exact signal recovery, loosely based on Corollary 3.3 [2]).

Let w(K) denote a measure of complexity of the prior model; let the
random sensing matrix Ap«, ~ D follow a suitable distribution D; then
X = Ay, K) = x provided that m > m*, m* = O(w(K)?).

Is (exact) signal recovery really required?

If signal processing in the digital domain amounts to detection, estimation,
classification or filtering, can we perform analogous operations on y rather
than x with compatible results?
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» With which accuracy can we perform classification in the compressed domain 7
How does m affect the classification error?

» How does a random matrix A differ w.r.t. classical dimensionality reduction
(e.g., PCA)? (A is a non-adaptive, universal dimensionality reduction method.)

» What models of x can be provably classified with high probability in the
compressed domain?

 Finite sets [3,4], disjoint spheres and ellipsoids [5], mixtures of sufficiently
separated Gaussians [6,7], ...



The classic framework of CS leverages stable embeddings to construct distance-
preserving mappings w.r.t. the chosen signal set (i.e., RIP for sparse signals [3]).

The following Definition and Lemma summarise Johnson-Lindenstrauss [9],
consequent proofs and applications [10,11] in the fashion of [3,8].

Definition (e-stable embedding).

Llet € € (0,1) and X', x" € S CR"; A€ R™" is a e-stable embedding of S if,
vx', x" € S,

(1=&) ¥ =x"[l; < A = x|, < (1 +€) [ = X[
Lemma (Johnson-Lindenstrauss [9-11]).

Let S CR", p = |S]; let Amxn N (0, 1) and e, € (0,1). If m> m",

m" = ce ’ (Iog(p) + log (%)) ,c>0

then A is a e-stable embedding of & with probability 1 — 7.
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fn's Stable Embeddings and Random Matrices

» The classic framework of CS leverages stable embeddings to construct distance-
preserving mappings w.r.t. the chosen signal set (i.e., RIP for sparse signals [8]).

» The following Definition and Lemma summarise Johnson-Lindenstrauss [9],
consequent proofs and applications [10,11] in the fashion of [3,8].

Definition (e-stable embedding).

Let e € (0,1) and X', x" € S C R"; A€ R™" is a e-stable embedding of S if,
vx', x" € S,

(1 =&)X = x"[[; < [[AG = x|, < (1 +€) [ = X"
Lemma (Johnson-Lindenstrauss [9-11]).

Let S CR”, p = |S]; let Amxn ~'N (0, 1) and g,7 € (0,1). If m> m",

o = e ot +10a (2)) e >

then A is a e-stable embedding of S with probability 1 — 7.
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» The classic framework of CS leverages stable embeddings to construct distance-
preserving mappings w.r.t. the chosen signal set (i.e., RIP for sparse signals [8]).

» The following Definition and Lemma summarise Johnson-Lindenstrauss [9],
consequent proofs and applications [10,11] in the fashion of [3,8].

We defined the property of A to preserve, within a small
multiplicative distortion, the pairwise distances between all points
In a finite set.



The classic framework of CS leverages stable embeddings to construct distance-
preserving mappings w.r.t. the chosen signal set (i.e., RIP for sparse signals [3]).

The following Definition and Lemma summarise Johnson-Lindenstrauss [9],
consequent proofs and applications [10,11] in the fashion of [3,8].

We defined the property of A to preserve, within a small

multiplicative distortion, the pairwise distances between all points
in a finite set.

There is always a rank m = O(log(p)) linear transformation A (in
particular, random matrices with i.i.d. (sub-)Gaussian entries) that
Is a stable embedding of a high-dimensional finite set of size p.



Using stable embeddings and a standard p-ary hypothesis testing
framework, Davenport et al. [3] establish a bound on the probability of
error of a simple compressive classifier.

Let S = {s;}"_, be a set of reference vectors; let x =s; + v,v ~ N(0,,0°1,)
For y = A x we form p equal-probability hypotheses:
Hi:y=A(si+v) i=1,..., p

L o 52 (y=As) (AA) L (y—As))
(2m)m det 02 AA"

The sufficient statistic for our test is therefore:

I=1,..., p

fy|H,-,A(y) — \/

ti=(y — As))"(AA" )" (y —As;), i=1,...,p

so we classify y according to the maximum likelihood, i.e. (this case),

A':argmint,-, I=1,...,p
i€(p]

Note that, asymptotically, AA* ~ I, = ti ~ ||y — AS/H% = ||A(x — 5/)”3
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» Geometric intuition for n=3, m=2,
p=3 at minimum distance r and noise

v~ N(0, c°l,)
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» Geometric intuition for n=3, m=2,
p=3 at minimum distance r and noise

v~ N(0, c°l,)



Theorem (Compressive classification of finite sets, Theorem 3 in [3]).

Let Amxni'i'\?'N (O, %) be a e-stable embedding of S, p = |S|. Define

r=min||s;, — S;
i;élj || j J||2

and assume the measurements are produced by the /*-th hypothesis,
y =A(si +v),v~N(0, d°l,)
Then the classification error probability P, = P[i # i*] of the classifier

| = argmin(y — As;)*(AA*)"1(y — As))

i€lp]

is bounded by
r*ml—e

e02n 3

— 1
P <P

The above bound is proved in [3] by simple inequalities using: the stable embedding
assumption; the minimum distance r ; a tail bound of the normal distribution; a union bound.



Set n = 1000 and draw p
= 3 random points in S at
fixed minimum distance r.

Generate random instances
of (5, x, A, y) according
to the p-hypotheses model.

Classity y with
| = argmin t;
i€[p]
and evaluate Pa(2, o)

Note that the noise
variance fixes:

2

(Depends on separation
between the hypotheses.)
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Assume now that x is drawn from a mixture of classes {C;}"_, .

If the classes are not closed convex sets, we take as classes their convex hulls:
{Si}_,Si=Hull(C;),SinS; =10
The classes (or their hulls) are assumed as disjoint closed convex sets, i.e.,V; # i,C;NC; = ()
The classes are assumed pairwise linearly separable (by a hyperplane), i.e.,
Bx+8 >0, VxecC(
Bx+p0 <04 VxeC(

(This setting strongly reminds linear support vector machines!)

Vi#i,3B e R BRI g<n :{

We want to assess whether a random projection is capable of preserving linear separability, that
is assumed as critical event for compressive classification:

By +B8 >0, VxeC,

Vi1, y=Ax,ABc R BcRY g< m:
J# Y o ! {By+f)'<0q, Vx € C;

This notion is quite different (somewhat loose) w.r.t. stable embeddings. It does not measure

how the distances between projected points of different classes are distorted as long as their
separability is maintained.
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The “Rare Eclipse” Problem
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The “Rare Eclipse” Problem
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A SN0, 1) = Null(A) ~ U(G"™™)

)13 G/ manifold of all

m-dimensional subspaces
of R” (through the origin)

Null(A) C G

Row(A) C G3

—"
—’
-
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Let Amxni'ri'\?' (0, %) and two convex sets C;,C; C R",C;nNC; = 0

find the smallest m < n,m € [0, 1) such that their images under A remain
disjoint, i.e.,
PIACiNAC; =0]>1—n

/_\A

Null(A) C GP=m
Row(A) C G

e
-
——
-
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The “Rare Eclipse” Problem

Let Amxn"w'./\/'(O, L) and two convex sets C;,C; C R",.C;NC; = 0;
find the smallest m < n,m € [0, 1) such that their images under A remain
disjoint, i.e.,

PIACiNAC; =0]>1—n

» Let's elaborate this requirement:
ACNAC, =0 vvx e C,x"eC,AX"—x")#0
» Define the Minkowski difference of the two sets:
Ci—Ci={x—-x"eR":x' €C,x" € Cj}
o Thus:

AC;, N AC; :@@NUH(A)HC/—CJ = ()

17



Problem (Rare Eclipse [5]).

Let Amxni'ri'\gj' (O, %) and two convex sets C;,C; C R",C;nNC; = 0
find the smallest m < n,m € [0, 1) such that their images under A remain

disjoint, I.e.,
P[AC,‘ﬂACJ' =0]>1-—nm

« Finally, since Null(A) is closed w.r.t. scalar multiplication, we can take the smallest
cone that contains the Minkowski difference, i.e.,

C~ = Cone(C; — C;),C~ = Cone(C; — C;)nS"!
o Thus, the problem is mapped to evaluating the probability that
ACiNAC, =0 < Null(A)NnC™ =0
that is the probability that Null(A) “avoids” the above cone.

» We need a notion of “size” to measure the probability of this event.

» Analogous concept in sparse signal recovery literature: the null space property [12].

18
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Let g ~ N(0p, I,); the Gaussian (mean) width of a set L C R" is

w(KC) = Eq4 [max (x, g)]

XEK

w(/C) is invariant under translations, orthogonal transformations, and convex hulls
of the set K.

19
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Let g ~ N(0p, I,); the Gaussian (mean) width of a set L C R" is

w(KC) = Eq4 [max (x, g)]

XEK

w(/C) is invariant under translations, orthogonal transformations, and convex hulls
of the set K.
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The Gaussian Width of a Set B oo

Let g ~ N(0p, I,); the Gaussian (mean) width of a set  C R" is

() = By | max (x.9)

XEK

w(/C) is invariant under translations, orthogonal transformations, and convex hulls
of the set K.

» Some relevant examples in the literature [14]:

o k-sparse signals:

K=Yk w(Xg) Sy/klog{

» p-cardinality sets of vectors:

K={s;}_,, w(K) <+/2logp max sl

21



The Gaussian Width of a Set

K={s}_,, w(K)<+/2logp max|si|-

i€[p]
| ' ' | =]
- Empirical 7
- - - Bound /,/
25 [ /// o
Q //// X
| 20+ 7 -
g /// X
< s )
g /// ‘X‘,‘.
10 x A
5 x | | | | | | il
1 1.2 14 16 18 2 2.2
vl6ogp
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“Escape through a mesh”

Let £ C 8"t and g ~ N(0p, I ,); denote A, = E[||g]l5]. If w(K) < A,
then any uniformly drawn Y € G/~ satisfies

PlY NK =] >1— el-z0n=w(O))

X3

Null(A) € G=m |
Row(A) C G]T A o

-

- 7
- )
-
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Corollary ( “Escape through a Minkowski difference”, Corollary 3.1 in [5]).

Let C;,C; C R” be disjoint convex sets; C~ = Cone(C; — C;) N 8" L,

wn = w(C7). Let Amxni'i'\?'J\/’(O, 1) and n € (0,1). Then for m > m~,

2
/ 1
m*:(wm+ 2Iogﬁ> +1:>IP>[AC,-HACJ-:(Z)]21—77

This corollary is simply obtained by taking in Gordon's Theorem:
Y = Null(A), K :=C , Apn < Vm
n = o(—3(vVm-w(C7))?)
and by fixing the last quantity to an arbitrary probability value.

The rest of Bandeira et al. [5] is simply concerned with finding closed-form
expressions for the Gaussian width of the cone that encloses the Minkowski
difference of special convex sets.

Spheres (simple) and ellipsoids (much harder) lend themselves to this calculation.



Lemma (C~ of two balls is a circular cone, Lemma 3.3 in [5]).

Let i =1,2,C; = pix+s;: x € By, (R") of centers s; € R” and radii p; >
0; assume that p; + p» < ||s1 — s2|[>. Then the Cone(C; — C,) = Circ(a),
that is the circular cone of aperture o

. Z,51—S
Circ(a) = {z e R": 2,51 = $2) > cosa}
1Zl2]|s1 — s2]l2
for a € (0, %), sina = ||£1fs’;2||2.

The proof entails showing:
Cone(Cy — () C Circ(a) and Circ(a) € Cone(Cqp — C»)
Since the Gaussian width of the circular cone is known,
w2 = w(Circ(a) NS"1)2 = nsin‘a + O(1)

plugging this into the previous Corollary yields:

m = (nspffspfnz)Q +0(v/n)
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A naive approach would be taking the radii as the largest semi-axes (i.e., maximum

singular values) of the symmetric PSD matrices defining the ellipsoids, i.e., taking the
smallest balls that enclose them.

Implicitly assumes that the bounding balls do not intersect.

This would lead to an extremely loose bound.

Bandeira et al. [5] take a step further and arrive to the following statement (proof is
less intuitive):

Theorem (Gaussian width of C~ of two ellipses, Theorem 3.5 in [5]).

Let i = 1,2, € R™" symmetric PSD, C; ={l'ix+s; : x € By, (R")} of
centers s; € R”. Then

e < IT1llF 4+ {|T2]lF
— C—(IT1&]l2 + ||T2€]l2)
$S1—S5>

where € = e C=1|s1 — soll2 > [[T1&|[> + ||T2€]|2.
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X Yy I|XEC,'

I=1,2,...,p,; € R™" symmetric PSD, Training Set :
Ci={lix+s;:x € By (R")} of centers s; € R” l > SuperVISed ' i s i

(NN)

@ 4 1™
Unsupervised N
— B | = |
(K-Means)
R" R™

Non-adaptive Supervised A7
—> —> | = |

(NN)

Gaussian
—
RP

Unsupervised A7
—p — | = |

(K-Means)

29



0.5

0.4

0.3 |+

0.2

0.1

0.5
0.4
0.3
0.2

0.1

I
PCA, K-
-+ RP, K-means

means

NZ.
N




Emphasis of this talk was on assessing whether it is (theoretically)
possible to distinguish linearly separable classes after random projection.

This ensures that even the simplest classification algorithm will succeed.

|deally, unsupervised learning will yield separated clusters after a non-
adaptive dimensionality reduction.

Application: compressive classification “right after’ the sensing interface, with
minimum computational and hardware complexity requirements.

Open questions:

How does (1 to g)-bit quantisation affect compressive classification? By how
much the requirements on m will be increased? Can we characterise:

P[Qq (AC)N Q4 (AC) =0]>1—n

Study of different models for other disjoint convex sets of interest

Application to classification of very high-dimensional (e.g., volumetric) data
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