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LINEAR INVERSE PROBLEMS 

Measurements 
Examples: 
 Scalp EEG measurements 
 Photons counted at 

detector 
 Observations 

Input Signal 
Examples: 
 Intracranial current 

density sources 
 Radiating object 
 Parameters 

Sensing Operator (matrix) 
Examples: 
 Brain tissue model 
 Imaging channel/field 

propagation model 
 Design matrix 
 

Noise 
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COMPRESSED SENSING IN A NUTSHELL 

 Measurements have a cost we would like to minimize: make 𝑀 as 
small as possible 
 Underdetermined case: when 𝑀 < 𝑁, there is a whole subspace 

of solutions 
 For some systems, the solution may be sparse 

 Sparsity: let 𝐱 = 𝐃(𝑁×𝑃) 𝐬(𝑃×1), 𝐬 be 𝐾-sparse, with 
𝐾 = supp 𝐬 ≝ 𝐬 0, 𝐾 ≪ 𝑃 

 Then 𝐲 = 𝐖(𝑀×𝑃) 𝐬(𝑃×1),𝐖 = 𝐀 𝐃 has a 𝐾-sparse solution 
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 ⋅ 0 is nonconvex ⇒ the previous problem is hard. 
 Consider the convex problem: 

 
 
 

 𝐬� = 𝐬 if (sufficient condition) 𝐖 has the restricted 
isometry property [CT,2005] w.r.t. 𝐾-sparse 𝐬. 

 Under similar hypotheses, noisy measurements and 
approximately sparse signals the recovery 
 
 
 
verifies 𝐬�  − 𝐬 𝟐 ≤ 𝐶0  𝐬−𝐬𝐾 1

𝐾
+ 𝐶1 𝝂 2 [CRT,2006]. 

COMPRESSED SENSING IN A NUTSHELL 
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THE SENSING MATRIX DESIGN PROBLEM 

Deterministic Ensemble? 
Random Subgaussian Ensemble? 

Physically realizable? 

Information-preserving guarantees 
w.r.t. 𝐾-sparse signals? 

(Near-isometric embedding?) 
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THE SENSING MATRIX DESIGN PROBLEM 

Deterministic Ensemble? 
Random Subgaussian Ensemble? 

Physically realizable? 

𝐀 is usually universal for all 𝐃 and 𝐾-sparse signals. What if we make it 
adaptive to the signal we are observing? 

Information-preserving guarantees 
w.r.t. 𝐾-sparse signals? 

(Near-isometric embedding?) 
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 Let 𝐱, 𝐬 : random vectors (RV) whose spectral (energy) distribution is 
localized. 

 Let 𝐊𝐱 : correlation matrix of the input RV, 
 
 
with 𝐐 an orthonormal basis of eigenvectors. 

 Localization as a deviation from the same-energy white case: 
 
 
 

 A simple measure of anisotropy in the partition of 𝑒𝐱 = tr(Λ𝐱) along 

the eigenvectors 𝐪𝑗 / eigenvalues 𝜆𝐱,𝑗. 

(ENERGY) LOCALIZATION 
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 Conjecture: 
 "Optimal" random projections for white RV (universal, worst-

case) 
→ isotropic subgaussian RV (i.i.d. Bernoulli or Gaussian) 

 "Optimal" random projections for localized RV (non-universal) 
→non-isotropic subgaussian RV that maximize the raked 
energy 

 Empirical evidence:  
 Assume 𝐱 has 𝐾-sparse realizations 
 Choose a posteriori out of 104 i.i.d. random Gaussian 

measurements the 𝑀 < 𝑁 with the highest energy 
 Observe the probability of successful recovery (PSR) of a 

sparse signal 

MAXIMUM-ENERGY PROJECTIONS: CONJECTURE 
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MAXIMUM-ENERGY PROJECTIONS: EXAMPLE 
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 We define rakeness as: 
 
 
i.e. the expected “affinity” of random projection vectors 𝐀𝑗 to the task 
of collecting the energy in 𝐱. 

 The maximum rakeness optimization problem will be: 
 
 
with 𝐊𝐀𝑗 = 𝐐 Λ𝐀𝑗 𝐐

† (as proved in [MRS,2012]) and under  

 Average energy constraint:  𝑒𝐀𝑗 = tr Λ𝐀𝐣 = 1 

 Localization constraint: the random projection vectors must be less localized than 
𝐱 ⇒ tuning parameter 𝜏 to balance isotropicity against localization.  

RAKENESS: DEFINITION 
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 We define rakeness as: 
 
 
i.e. the expected “affinity” of random projection vectors 𝐀𝑗 to the task 
of collecting the energy in 𝐱. 

 We may let 𝐊𝐀𝑗 = 𝐐 Λ𝐀𝑗  𝐐
†. The maximum rakeness optimization 

problem will be: 

RAKENESS: DEFINITION 

Average Energy Constraint 

Localization Constraint 
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A RAKENESS-BASED DESIGN FLOW 

Analysis 
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A RAKENESS-BASED DESIGN FLOW 
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For any 𝜏 ∈ [0,1] so that 𝐊𝐀𝑗  is positive definite the projections will 
allocate more energy along the principal components of 𝐱, while 
allocating a non-null fraction of it along the others. 
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 𝑁 = 256, 𝐾-sparse signals with 𝐊𝐱 matching a given localization and 30 dB 
superimposed AWGN noise. 𝐊𝐀𝑗designed with 𝜏 = 0.5. 

A RAKENESS-BASED DESIGN FLOW: EXAMPLE 
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 𝑁 = 256, 𝐾-sparse signals with 𝐊𝐱 matching a given localization and 30 dB 
superimposed AWGN noise. 𝐊𝐀𝑗designed with 𝜏 = 0.5. 

A RAKENESS-BASED DESIGN FLOW: EXAMPLE 

The more a signal is localized, the more rakeness is effective, the less 
measurements are required to achieve successful reconstruction with 
high probability! 
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 Rakeness-based CS raises the Donoho – Tanner phase transition 
curve [DT,2009] w.r.t. ℓ1 minimization (PSR >  90% as 𝑓(𝑀

𝑁
, 𝐾
𝑀

)) 
w.r.t. localized signals (in this example 𝐿 Λ𝐱 = 0.03, 𝜏 = 0.5).  

A RAKENESS-BASED DESIGN FLOW: EXAMPLE PHASE-TRANSITION CURVE 
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 Synthesis with Gaussian random matrices: Easy 
 
 
 

 
 
 Synthesis with Bernoulli random matrices: Non-trivial 
 Linear Probability Feedback (stationary case) [MRS,2012] 
 Quadratic Integer Programming (general case, hard problem) 

[CFLMRS,2014] 
 The Arcsin Law  (general case, non-general applicability) 

[VM,1966 and CFLMRS,2014] 

SYNTHESIS WITH BERNOULLI RANDOM MATRICES 

⇒ 
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 In some cases 𝐀 is designed from a finite set (design space) of 
physically realizable sensing vectors (e.g. an orthonormal basis). 

 Examples: partial Hadamard, partial Fourier (e.g. MRI) matrix 
ensembles 

 Problems:  
 𝐀 coherent w.r.t. 𝐃 (correlated columns in 𝐖) 
 Less degrees of freedom to apply rakeness-based designs to 

localized signals 

DETERMINISTIC ENSEMBLES 

= ⋅ 

𝐖 𝐀 𝐃 
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 In some cases 𝐀 is designed from a finite set (design space) of 
physically realizable sensing vectors (e.g. an orthonormal basis). 

 Examples: partial Hadamard, partial Fourier (e.g. MRI) matrix 
ensembles 

 Problems:  
 𝐀 coherent w.r.t. 𝐃 (correlated columns in 𝐖) 
 Less degrees of freedom to apply rakeness-based designs to 

localized signals 

DETERMINISTIC ENSEMBLES 

In such a constrained design space, is there an adaptive method to fine-
tune the sensing matrix to localized signals?  

= ⋅ 

𝐖 𝐀 𝐃 
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 Localized signals generally imply correlated measurements 
 
 
 Note: here 𝐀 is deterministic (e.g. Hadamard matrix 𝐇𝑛,𝑛 = 2𝑞 , 𝑞 ∈
ℕ), 𝑇 is a randomly chosen subset of basis vectors in 𝐀𝑇 

 Which is the subset 𝑇⋆ with cardinality 𝑚 < 𝑛 carrying maximum 
information w.r.t. the others? 

 This is very close to an experimental design problem 

LOCALIZED SIGNALS AND CORRELATED MEASUREMENTS 
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 Assume for now the measurements are correlated and 
Gaussian, then the differential entropy 
 
 
 
 

 
 
 With this information measure, 

 
 
 
 
 
 
and we form 𝐲𝑇⋆ = 𝐀𝑇⋆𝐱 with the rows of 𝐀 selected by 𝑇⋆.  

 This is also known as D-optimal design or MaxDet w.r.t. 𝐊𝐲. 

THE MAXIMUM ENTROPY PRINCIPLE 

E.T. Jaynes, 
ca. 1982 
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 When 𝐀 is deterministic, 𝐲 depends on 𝑓𝐱(𝑥). 
 𝑓𝐱(𝑥) Gaussian ⇒ maximum entropy 
 𝑓𝐱(𝑥) approximately Gaussian ⇒ near-maximum entropy 
 𝑓𝐱(𝑥)  non-Gaussian ⇒ 𝐲𝑇⋆  is the measurement set with 

least linear predictability (each measurement has 
maximum prediction error w.r.t. the remaining 𝑚 − 1) 

 
 

 

RATIONALE AND GAUSSIAN APPROXIMATION 
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A MAXIMUM DETERMINANT HEURISTIC 

Parents 

 Problem: Maximum Determinant Principal Submatrix of 𝐊𝐲 (hard) 
 Exact solution: Branch-and-Bound (Ko et al., 1995) 
 Heuristic (high-entropy) solution by a simple evolutionary algorithm: 

 Chromosomes ← Indices in 𝑇 
 Fitness ← det 𝐊𝐲T  

 
 

 

22 



 Average RSNR (dB) over 20 sample images, 25 MaxDet pool PHE, 25 
Random PHE and 50 RBE sensing matrices 

 The dataset is approximately sparse on the Daubechies-4 wavelet basis. 

EXPERIMENTAL RESULTS: HANDWRITTEN DIGITS 
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 Average RSNR (dB) over 50 sample ECG tracks, 25 MaxDet pool PHE, 25 
Random PHE and 50 RBE sensing matrices. 

 The dataset is approximately sparse on the Coiflet-3 wavelet basis. 

EXPERIMENTAL RESULTS: ECG TRACKS 
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 Non-adaptive sensing strategies are general, but 
underperforming if more signal-domain priors are available 

 Structured sparsity priors are commonly used during signal 
recovery (decoding): optimally designed measurements 
(encoding) could further improve performances 

 Adaptive sensing strategies leverage on such priors, although 
(often) lacking rigorous signal recovery guarantees 
 Maximum-Energy Measurements from Correlated Random 

Matrix Ensembles 
 Maximum-Entropy Measurements from Deterministic Matrix 

Ensembles 
 Many other adaptive designs exist (see bibliography) 

CONCLUSION 
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Thank you for your attention. 
Questions? 
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