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LINEAR INVERSE PROBLEMS 

Measurements 
Examples: 
 Scalp EEG measurements 
 Photons counted at 

detector 
 Observations 

Input Signal 
Examples: 
 Intracranial current 

density sources 
 Radiating object 
 Parameters 

Sensing Operator (matrix) 
Examples: 
 Brain tissue model 
 Imaging channel/field 

propagation model 
 Design matrix 
 

Noise 
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COMPRESSED SENSING IN A NUTSHELL 

 Measurements have a cost we would like to minimize: make 𝑀 as 
small as possible 
 Underdetermined case: when 𝑀 < 𝑁, there is a whole subspace 

of solutions 
 For some systems, the solution may be sparse 

 Sparsity: let 𝐱 = 𝐃(𝑁×𝑃) 𝐬(𝑃×1), 𝐬 be 𝐾-sparse, with 
𝐾 = supp 𝐬 ≝ 𝐬 0, 𝐾 ≪ 𝑃 

 Then 𝐲 = 𝐖(𝑀×𝑃) 𝐬(𝑃×1),𝐖 = 𝐀 𝐃 has a 𝐾-sparse solution 
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 ⋅ 0 is nonconvex ⇒ the previous problem is hard. 
 Consider the convex problem: 

 
 
 

 𝐬� = 𝐬 if (sufficient condition) 𝐖 has the restricted 
isometry property [CT,2005] w.r.t. 𝐾-sparse 𝐬. 

 Under similar hypotheses, noisy measurements and 
approximately sparse signals the recovery 
 
 
 
verifies 𝐬�  − 𝐬 𝟐 ≤ 𝐶0  𝐬−𝐬𝐾 1

𝐾
+ 𝐶1 𝝂 2 [CRT,2006]. 

COMPRESSED SENSING IN A NUTSHELL 
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THE SENSING MATRIX DESIGN PROBLEM 

Deterministic Ensemble? 
Random Subgaussian Ensemble? 

Physically realizable? 

Information-preserving guarantees 
w.r.t. 𝐾-sparse signals? 

(Near-isometric embedding?) 
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THE SENSING MATRIX DESIGN PROBLEM 

Deterministic Ensemble? 
Random Subgaussian Ensemble? 

Physically realizable? 

𝐀 is usually universal for all 𝐃 and 𝐾-sparse signals. What if we make it 
adaptive to the signal we are observing? 

Information-preserving guarantees 
w.r.t. 𝐾-sparse signals? 

(Near-isometric embedding?) 
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 Let 𝐱, 𝐬 : random vectors (RV) whose spectral (energy) distribution is 
localized. 

 Let 𝐊𝐱 : correlation matrix of the input RV, 
 
 
with 𝐐 an orthonormal basis of eigenvectors. 

 Localization as a deviation from the same-energy white case: 
 
 
 

 A simple measure of anisotropy in the partition of 𝑒𝐱 = tr(Λ𝐱) along 

the eigenvectors 𝐪𝑗 / eigenvalues 𝜆𝐱,𝑗. 

(ENERGY) LOCALIZATION 
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 Conjecture: 
 "Optimal" random projections for white RV (universal, worst-

case) 
→ isotropic subgaussian RV (i.i.d. Bernoulli or Gaussian) 

 "Optimal" random projections for localized RV (non-universal) 
→non-isotropic subgaussian RV that maximize the raked 
energy 

 Empirical evidence:  
 Assume 𝐱 has 𝐾-sparse realizations 
 Choose a posteriori out of 104 i.i.d. random Gaussian 

measurements the 𝑀 < 𝑁 with the highest energy 
 Observe the probability of successful recovery (PSR) of a 

sparse signal 

MAXIMUM-ENERGY PROJECTIONS: CONJECTURE 
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MAXIMUM-ENERGY PROJECTIONS: EXAMPLE 
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 We define rakeness as: 
 
 
i.e. the expected “affinity” of random projection vectors 𝐀𝑗 to the task 
of collecting the energy in 𝐱. 

 The maximum rakeness optimization problem will be: 
 
 
with 𝐊𝐀𝑗 = 𝐐 Λ𝐀𝑗 𝐐

† (as proved in [MRS,2012]) and under  

 Average energy constraint:  𝑒𝐀𝑗 = tr Λ𝐀𝐣 = 1 

 Localization constraint: the random projection vectors must be less localized than 
𝐱 ⇒ tuning parameter 𝜏 to balance isotropicity against localization.  

RAKENESS: DEFINITION 
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 We define rakeness as: 
 
 
i.e. the expected “affinity” of random projection vectors 𝐀𝑗 to the task 
of collecting the energy in 𝐱. 

 We may let 𝐊𝐀𝑗 = 𝐐 Λ𝐀𝑗  𝐐
†. The maximum rakeness optimization 

problem will be: 

RAKENESS: DEFINITION 

Average Energy Constraint 

Localization Constraint 
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A RAKENESS-BASED DESIGN FLOW 

Analysis 
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A RAKENESS-BASED DESIGN FLOW 

Analysis 
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For any 𝜏 ∈ [0,1] so that 𝐊𝐀𝑗  is positive definite the projections will 
allocate more energy along the principal components of 𝐱, while 
allocating a non-null fraction of it along the others. 
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 𝑁 = 256, 𝐾-sparse signals with 𝐊𝐱 matching a given localization and 30 dB 
superimposed AWGN noise. 𝐊𝐀𝑗designed with 𝜏 = 0.5. 

A RAKENESS-BASED DESIGN FLOW: EXAMPLE 
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 𝑁 = 256, 𝐾-sparse signals with 𝐊𝐱 matching a given localization and 30 dB 
superimposed AWGN noise. 𝐊𝐀𝑗designed with 𝜏 = 0.5. 

A RAKENESS-BASED DESIGN FLOW: EXAMPLE 

The more a signal is localized, the more rakeness is effective, the less 
measurements are required to achieve successful reconstruction with 
high probability! 
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 Rakeness-based CS raises the Donoho – Tanner phase transition 
curve [DT,2009] w.r.t. ℓ1 minimization (PSR >  90% as 𝑓(𝑀

𝑁
, 𝐾
𝑀

)) 
w.r.t. localized signals (in this example 𝐿 Λ𝐱 = 0.03, 𝜏 = 0.5).  

A RAKENESS-BASED DESIGN FLOW: EXAMPLE PHASE-TRANSITION CURVE 
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 Synthesis with Gaussian random matrices: Easy 
 
 
 

 
 
 Synthesis with Bernoulli random matrices: Non-trivial 
 Linear Probability Feedback (stationary case) [MRS,2012] 
 Quadratic Integer Programming (general case, hard problem) 

[CFLMRS,2014] 
 The Arcsin Law  (general case, non-general applicability) 

[VM,1966 and CFLMRS,2014] 

SYNTHESIS WITH BERNOULLI RANDOM MATRICES 

⇒ 
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RAKENESS-BASED COMPRESSED SENSING: BIBLIOGRAPHY 

17 



 In some cases 𝐀 is designed from a finite set (design space) of 
physically realizable sensing vectors (e.g. an orthonormal basis). 

 Examples: partial Hadamard, partial Fourier (e.g. MRI) matrix 
ensembles 

 Problems:  
 𝐀 coherent w.r.t. 𝐃 (correlated columns in 𝐖) 
 Less degrees of freedom to apply rakeness-based designs to 

localized signals 

DETERMINISTIC ENSEMBLES 

= ⋅ 

𝐖 𝐀 𝐃 
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 In some cases 𝐀 is designed from a finite set (design space) of 
physically realizable sensing vectors (e.g. an orthonormal basis). 

 Examples: partial Hadamard, partial Fourier (e.g. MRI) matrix 
ensembles 

 Problems:  
 𝐀 coherent w.r.t. 𝐃 (correlated columns in 𝐖) 
 Less degrees of freedom to apply rakeness-based designs to 

localized signals 

DETERMINISTIC ENSEMBLES 

In such a constrained design space, is there an adaptive method to fine-
tune the sensing matrix to localized signals?  

= ⋅ 

𝐖 𝐀 𝐃 
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 Localized signals generally imply correlated measurements 
 
 
 Note: here 𝐀 is deterministic (e.g. Hadamard matrix 𝐇𝑛,𝑛 = 2𝑞 , 𝑞 ∈
ℕ), 𝑇 is a randomly chosen subset of basis vectors in 𝐀𝑇 

 Which is the subset 𝑇⋆ with cardinality 𝑚 < 𝑛 carrying maximum 
information w.r.t. the others? 

 This is very close to an experimental design problem 

LOCALIZED SIGNALS AND CORRELATED MEASUREMENTS 

19 



 Assume for now the measurements are correlated and 
Gaussian, then the differential entropy 
 
 
 
 

 
 
 With this information measure, 

 
 
 
 
 
 
and we form 𝐲𝑇⋆ = 𝐀𝑇⋆𝐱 with the rows of 𝐀 selected by 𝑇⋆.  

 This is also known as D-optimal design or MaxDet w.r.t. 𝐊𝐲. 

THE MAXIMUM ENTROPY PRINCIPLE 

E.T. Jaynes, 
ca. 1982 
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 When 𝐀 is deterministic, 𝐲 depends on 𝑓𝐱(𝑥). 
 𝑓𝐱(𝑥) Gaussian ⇒ maximum entropy 
 𝑓𝐱(𝑥) approximately Gaussian ⇒ near-maximum entropy 
 𝑓𝐱(𝑥)  non-Gaussian ⇒ 𝐲𝑇⋆  is the measurement set with 

least linear predictability (each measurement has 
maximum prediction error w.r.t. the remaining 𝑚 − 1) 

 
 

 

RATIONALE AND GAUSSIAN APPROXIMATION 
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A MAXIMUM DETERMINANT HEURISTIC 

Parents 

 Problem: Maximum Determinant Principal Submatrix of 𝐊𝐲 (hard) 
 Exact solution: Branch-and-Bound (Ko et al., 1995) 
 Heuristic (high-entropy) solution by a simple evolutionary algorithm: 

 Chromosomes ← Indices in 𝑇 
 Fitness ← det 𝐊𝐲T  
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 Average RSNR (dB) over 20 sample images, 25 MaxDet pool PHE, 25 
Random PHE and 50 RBE sensing matrices 

 The dataset is approximately sparse on the Daubechies-4 wavelet basis. 

EXPERIMENTAL RESULTS: HANDWRITTEN DIGITS 
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 Average RSNR (dB) over 50 sample ECG tracks, 25 MaxDet pool PHE, 25 
Random PHE and 50 RBE sensing matrices. 

 The dataset is approximately sparse on the Coiflet-3 wavelet basis. 

EXPERIMENTAL RESULTS: ECG TRACKS 
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 Non-adaptive sensing strategies are general, but 
underperforming if more signal-domain priors are available 

 Structured sparsity priors are commonly used during signal 
recovery (decoding): optimally designed measurements 
(encoding) could further improve performances 

 Adaptive sensing strategies leverage on such priors, although 
(often) lacking rigorous signal recovery guarantees 
 Maximum-Energy Measurements from Correlated Random 

Matrix Ensembles 
 Maximum-Entropy Measurements from Deterministic Matrix 

Ensembles 
 Many other adaptive designs exist (see bibliography) 

CONCLUSION 
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Thank you for your attention. 
Questions? 
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