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LINEAR INVERSE PROBLEMS

Measurements Input Signal
Examples: Examples:
= Scalp EEG measurements " |ntracranial current
=  Photons counted at Sensing O tor (matrix) density sources
detector ensing Cperator {imatrix = Radiating object
: Examples:
= QObservations = Parameters

= Brain tissue model

* Imaging channel/field
propagation model

= Desigh matrix
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Y(Mx1) = A(MXN)X(le)

= Measurements have a cost we would like to minimize: make M as
small as possible
= Underdetermined case: when M < N, there is a whole subspace
of solutions

= For some systems, the solution may be sparse
* Sparsity: let X = D(yxp) S(px1), S be K-sparse, with
K = |supp(s)| £ ||s]lo, K K P
= Theny = Wyyxpy S(px1), W = A D has a K-sparse solution

s = argmin ||€]||p s.t. y = WE
gcRn
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I-||o is nonconvex = the previous problem is hard.
Consider the convex problem:

S = argmin ||&]|1 s.t. y = W&

geR™

S = s if (sufficient condition) W has the restricted
isometry property [CT,2005] w.r.t. K-sparse s.
Under similar hypotheses, noisy measurements and
approximately sparse signals the recovery

S = argmin ||&]|1 s.t. ||y — WE||2 < ||v]|2
geRn

verifies [|§ — s|l, < C, ”S‘jg”l - C, |[v]l, [CRT,2006].
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Deterministic Ensemble?
Random Subgaussian Ensemble?
Physically realizable?
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Deterministic Ensemble?
Random Subgaussian Ensemble?
Physically realizable?

J
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A is usually universal for all D and K-sparse signals. What if we make it
adaptive to the signal we are observing?

Information-preserving guarantees
w.r.t. K-sparse signals?
(Near-isometric embedding?)
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Let X, s : random vectors (RV) whose spectral (energy) distribution is
localized.

Let K, : correlation matrix of the input RV,
Ky = E[xx'] = QALQ"

with Q an orthonormal basis of eigenvectors.

Localization as a deviation from the same-energy white case:

L(Ay) = ni (Ax’j — 1)2 c 0,1 —1/n]

Cx n

7=0
A simple measure of anisotropy in the partition of e, = tr(Ay) along

the eigenvectors q; / eigenvalues Ay ;.
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= Conjecture:

= "Optimal"” random projections for white RV (universal, worst-
case)

— jsotropic subgaussian RV (i.i.d. Bernoulli or Gaussian)

= "Optimal” random projections for localized RV (non-universal)
—non-isotropic subgaussian RV that maximize the raked
energy

= Empirical evidence:
= Assume X has K-sparse realizations

= Choose a posteriori out of 10%* i.i.d. random Gaussian
measurements the M < N with the highest energy

= Observe the probability of successful recovery (PSR) of a
sparse signal
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= We define rakeness as:
p(A;j,x) =Ea, x [ly;ll3] = Ea, x [[[A;x]3]

i.e. the expected “affinity” of random projection vectors A; to the task

of collecting the energy in Xx.

= The maximum rakeness optimization problem will be:
max p(A,,X) = max tr (KAJ. KX) — max tr (AAJ. AX)
with KA]. = QAAJ. QT (as proved in [MRS,2012]) and under

= Average energy constraint: €r; = tr (AAi) =1

= Localization constraint: the random projection vectors must be less localized than
X = tuning parameter 7 to balance isotropicity against localization.
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= We define rakeness as:
p(A;j,x) =Ea, x [ly;ll3] = Ea, x [[[A;x]3]

i.e. the expected “affinity” of random projection vectors A; to the task

of collecting the energy in X.

= We may let KAj =Q AAj Q. The maximum rakeness optimization

problem will be: -
-2.3
107
max tr (AAj AX) \
Aa, Average Energy Constraint 25|
s.t. / wa| TN
Localization Constraint S [ [— '
j
-1/ | 1/n
eAJ‘ - 1/ 10*°} . . . 1
50 100 150 200 250

L(Aa.) < TL(Ax), T € 1]0,1] J
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Analysis Kx =E (XXT) — QAXQT
= L(Ax)

max p(A;, x)

Synthesis S.L.

ea, = 1

L(Aa,) <TL(Ax), 7 €0,1]
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Analysis Ky=E (XX]L) — QAxQT

/7 A

Forany 7 € [0,1] so that KAj is positive definite the projections will

allocate more energy along the principal components of X, while
allocating a non-null fraction of it along the others.

ea, = 1

L(Aa,) <TL(Ax), 7 €0,1]
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SED DESIGN FLOW: EXAMPLE

= N = 256, K-sparse signals with K, matching a given localization and 30 dB
superimposed AWGN noise. KAjdesigned with T = 0.5.

M | PSR > 90%

100 — ,
exponential interpolation

90 i.i.d. cases @
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= N = 256, K-sparse signals with K, matching a given localization and 30 dB
superimposed AWGN noise. KAjdesigned with T = 0.5.

100 — ,
exponential interpolation
90 i.i.d. cases @
K=4 0O
K — AN
80
XX K=16 ¢

The more a signal is localized, the more rakeness is effective, the less
measurements are required to achieve successful reconstruction with
high probability!

L [
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Rakeness-based CS raises the Donoho — Tanner phase tran5|t|on

curve [DT,2009] w.r.t. £; minimization (PSR > 90% as f(— —))
w.r.t. localized signals (in this example L(A,) = 0.03,7 =

0.8 F
= 06 Lk
= 0.
" pi
I 0.4
S 7T

0.2 - —a rakeness-based

interpolation
0 1 L | 1 ]
0 0.2 0.4 0.6 0.8 1
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= Synthesis with Gaussian random matrices: Easy

w 1 (27
AL~ N(0, ~I) R
Ka, =E(AlA;)) =QAr, Q" = A~ N(0,Ka,) € R"

A; =AY [Ka,

= Synthesis with Bernoulli random matrices: Non-trivial
= Linear Probability Feedback (stationary case) [MRS,2012]

= Quadratic Integer Programming (general case, hard problem)
[CFLMRS,2014]

= The Arcsin Law (general case, non-general applicability)
[VM,1966 and CFLMRS,2014]
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= |n some cases A is designed from a finite set (design space) of
physically realizable sensing vectors (e.g. an orthonormal basis).

= Examples: partial Hadamard, partial Fourier (e.g. MRI) matrix
ensembles

= Problems:
= A coherent w.r.t. D (correlated columns in W)

= Less degrees of freedom to apply rakeness-based designs to
localized signals

HEBE ....
-I-. | | -.l:...
LSt
I: | | = .-.. .::
e e

TR

" 2" " n
| N | ...
= = " L.

W A D

18



][] {e
ISTIC ENSEMBLES .

= |n some cases A is designed from a finite set (design space) of
physically realizable sensing vectors (e.g. an orthonormal basis).

= Examples: partial Hadamard, partial Fourier (e.g. MRI) matrix
ensembles

I nl‘AIAIAIAAI\-

In such a constrained design space, is there an adaptive method to fine-
tune the sensing matrix to localized signals?
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Localized signals generally imply correlated measurements
K, = AK, A K, = ArK AL T c[1,n]

Note: here A is deterministic (e.g. Hadamard matrix H,,n = 29,q €
N), T is a randomly chosen subset of basis vectors in A7

Which is the subset T* with cardinality m < n carrying maximum
information w.r.t. the others?

This is very close to an experimental design problem

Ky
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= Assume for now the measurements are correlated and
Gaussian, then the differential entropy

def

yr) 2 = [ gy 0)1og fy, (0)a

m E.T. Jaynes,
ca. 1982

h(yr) = 5 log(2me)"detKy,,. < 5 log (27re r YT) ﬂ

=  With this information measure,
T* = argmax h(yr) s.t. |T| =m
TC[0,n—1]
= argmax logdetKy.,. s.t. |T| =m
TC0,n—1]
and we form y;+ = A;+X with the rows of A selected by T™.
= This is also known as D-optimal design or MaxDet w.r.t. Ky. .
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= When A is deterministic, y depends on f,(x).
= fx(x) Gaussian = maximum entropy
= fx(x) approximately Gaussian = near-maximum entropy

= fx(x) non-Gaussian = y;+ is the measurement set with
least linear predictability (each measurement has

maximum prediction error w.r.t. the remainingm — 1)




Problem: Maximum Determinant Principal Submatrix of Ky, (hard)
Exact solution: Branch-and-Bound (Ko et al., 1995)

Heuristic (high-entropy) solution by a simple evolutionary algorithm:
= Chromosomes « IndicesinT
= Fitness « det Ky,

Parents <

Solution Dnmam
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(b)  Original (¢c) T7* PHE, (d) Random (e) RBE,
image, n = RSNR = PHE, RSNR = RSNR =
4096 pixel 36.82dB 1.88dB 19.85dB
m MaxDet pool PHE Random PHE RBE
1024 (n/4) 36.57 1.51 20.63
1365 (|7/3]) 39.63 2.89 26.08

= Average RSNR (dB) over 20 sample images, 25 MaxDet pool PHE, 25
Random PHE and 50 RBE sensing matrices

= The dataset is approximately sparse on the Daubechies-4 wavelet basis.
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RESULTS: ECG TRACKS |

-l I I I I I 1 I I I I I 1 I I I I I

08 L Original ---- _ 08 L Original ---- _ 08 L Original ----
Recovered — Recovered — Recovered —
0.6 F | - 06 = 0.6
> 04 1 1 =04} { > 04 |
02 | k - 02F {4 1 02+t
0 it.r-"'""\-l ,/.‘/\.-_J—\:.‘ 0 _’*uq,ﬁt‘;.,: kﬁwﬂm 0 rrﬁ'l"w
_nz 1 1 1 1 1 _{]2 1 HI| 1 1 .| _|}2 1 1 1 1 1
50 100 Il‘jl} 200 250 50 100 _15(] 200 250 50 100 _15{] 200 250
] J J
(a) T* PHE, RSNR = (b)Random PHE,RSNR= (c) RBE, RSNR =
15.94dB 7.40dB 12.85dB
m MaxDet pool PHE Random PHE RBE
64 (n/4) 15.12 2.68 6.94
85 (|n/3]) 17.20 3.73 11.11

= Average RSNR (dB) over 50 sample ECG tracks, 25 MaxDet pool PHE, 25
Random PHE and 50 RBE sensing matrices.

= The dataset is approximately sparse on the Coiflet-3 wavelet basis.
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= Non-adaptive sensing strategies are general, but
underperforming if more signal-domain priors are available

= Structured sparsity priors are commonly used during signal
recovery (decoding): optimally designed measurements
(encoding) could further improve performances

= Adaptive sensing strategies leverage on such priors, although
(often) lacking rigorous signal recovery guarantees

= Maximum-Energy Measurements from Correlated Random
Matrix Ensembles

= Maximum-Entropy Measurements from Deterministic Matrix
Ensembles

= Many other adaptive designs exist (see bibliography)

28



SSIGPRC
SSIGPRO)

V. Cambareri, R. Rovatti, and G. Setti, "Maximum Entropy Hadamard Sensing
of Sparse and Localized Signals" ICASSP 2014, Florence, Italy, pp. 2376-2380

A. Caprara; F. Furini; A. Lodi; M. Mangia; R. Rovatti; G. Setti, "Generation of
Antipodal Random Vectors With Prescribed Non-Stationary 2-nd Order
Statistics," Signal Processing, IEEE Transactions on , 62.6 (2014): 1603-1612.

V. Cambareri, M. Mangia, F. Pareschi, R. Rovatti, and G. Setti, "A rakeness-
based design flow for analog-to-information conversion by compressive
sensing." Circuits and Systems (ISCAS), 2013 IEEE International Symposium on.
IEEE, 2013.

M. Mangia, R. Rovatti, and G. Setti. "Rakeness in the design of Analog-to-
Information Conversion of Sparse and Localized Signals." Circuits and Systems
I: Regular Papers, IEEE Transactions on 59.5 (2012): 1001-1014. Guillemin-
Cauer Award.

Ranieri, J.; Rovatti, R.; Setti, G., "Compressive sensing of localized signals:
Application to Analog-to-Information conversion," Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no.,
pp.3513,3516, May 30 2010-June 2 2010

26



ROBLEMS)

Wang, Zhongmin, and Gonzalo R. Arce. "Variable density compressed image
sampling." Image Processing, IEEE Transactions on 19.1 (2010): 264-270.

Seeger, Matthias W., and Hannes Nickisch. "Compressed sensing and Bayesian
experimental design." Proceedings of the 25th international conference on
Machine learning. ACM, 2008.

Ji, Shihao, Ya Xue, and Lawrence Carin. "Bayesian compressive sensing."Signal
Processing, IEEE Transactions on 56.6 (2008): 2346-2356.

Carson, William R., et al. "Communications-inspired projection design with
application to compressive sensing." SIAM Journal on Imaging Sciences 5.4
(2012): 1185-1212.

Duarte-Carvajalino, J.M.,, et al. "Task-driven adaptive statistical compressive
sensing of Gaussian mixture models." Signal Processing, IEEE Transactions
on 61.3 (2013): 585-600.

Chen, W., M. R. D. Rodrigues, and I. J. Wassell. "Projections design for
statistical compressive sensing: A tight frame based approach." IEEE
Transactions on Signal Processing 61.4 (2013): 2016-2029.

Puy, Gilles, Pierre Vandergheynst, and Yves Wiaux. "On variable density
compressive sampling." Signal Processing Letters, IEEE 18.10 (2011): 595-598.

27



SSIGPRO

READINGS) '

Jaynes, Edwin T. "On the rationale of maximum-entropy
methods." Proceedings of the IEEE 70.9 (1982): 939-952.

Jaynes, Edwin T. "Information theory and statistical
mechanics." Physical review 106.4 (1957): 620.

Jaynes, Edwin T. "Information theory and statistical mechanics.
Il." Physical review 108.2 (1957): 171.

Ko, Chun-Wa, Jon Lee, and Maurice Queyranne. "An exact algorithm

for maximum entropy sampling." Operations Research 43.4 (1995):
684-691.

Donoho, David L., et al. "Maximum entropy and the nearly black
object."Journal of the Royal Statistical Society. Series B
(Methodological) (1992): 41-81.

Elad, Michael. "Optimized projections for compressed

sensing." Signal Processing, IEEE Transactions on 55.12 (2007): 5695-
5702.

28



Thank you for your attention.
Questions?
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