Re-Identification for Multi-Person Tracking

Vladimir Somers

Keemotion - UCL - EPFL

06/07/2020

6/07/2020

Summary

- Long term Multi-Object Tracking and obstacles
- 2. **Visual affinity** estimation for tracklets/detections
- Person Re-Identification models for visual affinity estimation
- Differences between traditional Re-ID and Re-ID for MOT
- **Questions** session

Context: Sport player identification and tracking

Identifying players **during the whole game** by telling where each player is located at each frame.

Identification is mandatory for **personalized content**:

- Individual statistics
- Personalized game highlights

Multi-Object Tracking (MOT)

Tracking-by-detection is the mainstream approach:

Detection generation with an object detector

2. Detection association over adjacent frames using spatio-temporal and

Adjacent association fails at long term MOT

Detection association over adjacent frames can be:

- Easy:
 - Isolated players
 - Discriminative appearance feature
- Ambiguous or impossible:
 - **Occlusions**
 - Similar appearance
 - Sporadicity* of discriminative appearance features

*appearing or happening at irregular intervals in time

Re-identification for Multi-Person Tracking

From short to long term tracking

Need to compute a **tracklet affinity metric** to drive the association process.

Detections

Detections generated for successive frames

Short Tracklets

- Non ambiguous adjacent frames association
- **Existing solutions** to produce short tracklet

Long Tracks

- Tracklets Re-Identification with **bridges**
- Avoid **Identity Switches**
- Core problem

Re-identification for Multi-Person Tracking

Tracklets/detections affinity

Affinity is the **identity similarity score**.

It's based on **spatio-temporal** and/or **appearance** features.

Tracklets/detections affinity

Affinity

Affinity is the identity similarity score

THESIS CORE GOAL

Tracklet B:

Detection A

Detection B

Graph based formalism for tracks optimization

There are existing graph-based **MOT** frameworks to jointly optimize multiple players tracks based on detections/tracklets pairwise **affinities** and **exclusions** graphs

- Amit Kumar, K. C., Delannay, D., & Vleeschouwer, C. De. (2016). Iterative hypothesis testing for multi-object tracking in presence of features with variable reliability.
- Amit Kumar, K. C., Jacques, L., & De Vleeschouwer, C. (2017). Discriminative and Efficient Label **Propagation** on Complementary Graphs for Multi-Object Tracking.

Re-identification for Multi-Person Tracking

How to estimate detections visual affinity?

Use modern **Deep CNN models**

First approach:

- Direct pairwise affinity inference using a deep model
- Not convenient: **n** detections -> O(n²) model inferences

How to estimate detections affinity?

Second approach:

- Deep **feature extractor**
- Detections projected to **embedding** space
- Affinity derived from Euclidean distance
- **n** model inferences for **n** detections
- Representation learning

Re-identification for Multi-Person Tracking

Representation Learning

Detections with same
 identity must be close to
 each other in the
 embedding space

2D Embedding Space

How to train a model for Representation Learning?

- Good embeddings = discriminative features
- Two popular training supervision approaches

How to train a model for Representation Learning?

Classification Supervision:

- One **label** for each **identity** in training set
- Softmax activation on last layer
- Cross entropy loss
- Drop classification head at test time

How to train a model for Representation Learning?

Metric Learning Supervision:

- **Triplet loss**
- Euclidean distance in embedding space

Person Re-Identification as described in literature

Given a person of interest (query) find other occurrences of that person among a set of candidates (gallery)

Person Re-Identification

- Multiple surveillance cameras
- Bounding box detections
- Human vignettes gallery

UCLouvain

Re-identification for Multi-Person Tracking

Person Re-Identification objective

Gallery images are ranked according to their distance to the query image

Re-ID for sport MOT vs traditional Re-ID

Subtle but important **differences** between **Re-ID for sport MOT** and **traditional Re-ID**

Exploit the **specificities** of this context to build performant Re-ID models

Re-ID for MOT vs traditional Re-ID

Different challenges:

^{*} Bastien, N. (2020). A comparative analysis of deep Re-Identification models for matching pairs of identities.

Re-ID for MOT vs traditional Re-ID

Different **input data** for re-identification :

Re-ID for MOT	Traditional Re-ID
Tracklets comparison	Image - video comparison
Tracklet A: Same Identity?	Same Identity?
Tracklet B:	

Re-ID for **sport** MOT vs traditional Re-ID

Different contexts:

Re-ID for sport MOT	Traditional Re-ID
Single camera view	Multiple non overlapping surveillance camera
Indoor sport pitch	Outdoor street view
No luminosity variation	Luminosity, angle and image quality variation
Similar appearance and clothes	Big appearance dissimilarity
Sporadicity of discriminative appearance features	Discriminative appearance features always available

Recap and Questions

Tracklet **visual affinity estimation** using deep **person re-identification models** for solving **long term multi-person tracking** in a **team sport** context.

Re-identification for Multi-Person Tracking