
Bees, collaborative algorithms 	

& NodeJS

What a combo !	


!1



Context

• Reflexions on a biological algorithms and a 
programming framework,	


• Cooperative algorithm. 	


• Proof of concept	


• coded in 4 full time days !

!2



Biological based models

• Mathematical models that are motivated by 
observation of living organisms, for 
examples:	


• Trees,	


• brain,	


• Ants, …

!3



Ants model

• Find the shortest path in complex graph,	


• Use local information exchange,	


• Pheromone analogy,	


• Very powerful in time changing graph.

!4



Bees

• Bees have a complex 
social behaviour.	


• Karl von Frisch received 
the Nobel Prize in 
Physiology or Medicine 
in 1973, along with 
Nikolaas Tinbergen and 
Konrad Lorenz.

Karl von Frisch (1886-1982)

!5

http://en.wikipedia.org/wiki/Nobel_Prize_in_Physiology_or_Medicine
http://en.wikipedia.org/wiki/Nikolaas_Tinbergen
http://en.wikipedia.org/wiki/Konrad_Lorenz


Bees’ way of life

• Each worker bee takes 
several position inside 
the colony during its life: 
cleaner, nurse, wall 
worker, handler, 
ventilator and guard.	


• The oldest are scouts, 
juste before this 
important positions they 
are pollen collector.

!6



Knowledge sharing

• Each bee gathers the pollen and shares its 
discoveries with others.	


• The description is made through a dance inside 
the hive by the bee (Karl von Frisch) and presents:	


• the place: coordinates in space, based on the 
position of the sun and electromagnetic hearth 
field,	


• the quality of the finding flowers.

!7



Pollen gathering

• Two steps process	


1. pollen finding	


!

2. knowledge sharing	


•  

!8

Pollen Gathering



Pollen gathering

• Two steps process	


1. pollen finding	


• long process	


2. knowledge sharing	


• Each bee present 
its results to all.	


• short process

!9

General idea: 
long and short process



Goal of the bees colony

• The colony must collect the maximal 
amount of honey during a minimum of time 
(the winter is coming).	


• This process is, after all, a path finding 
algorithm in a vast and time changing 
environment (Artificial Intelligence, A Modern 
Approach,  S. Russel & P. Norvig).

!10



What about ?

• Doing a simple path finding algorithm based 
on that idea ?	


• Coding it very rapidly ?

!11



Collaborative Algorithm

• Used it when the optimal solution researching is a 
very long process.	


• We dispose a set of very simple entities that solves 
part of a complex problem based on some knowledge.	


• This knowledge involves in time.	


• Goal: converge to a global solution of the problem, i.e. 
after a certain among of time, all entities find the same 
solution and this solution is the optimal solution of 
the problem.

!12



Path finding

• Suppose a regular graph (the map),	


• Define	


•  a neighbouring system 
(frontier),	


• the cost to move from a 
position to its neighbouring,	


• Find the best limited depth path in 
graph,	


• Goal: visit minimum node as 
possible before finding the optimal 
depth limited path.

!13



Some Definitions: 
The current position, the frontier, unknown and the path



Path finding and prior knowledge

• Define a prior model of the map,	


• exemple: locally smooth.	


• Use the prior knowledge to build an 
expected map.	


• Use this expected map to estimate the path.	


• While the expected map doesn’t fail, move 
along that path.

!15



Path finding and collaborative algorithm

@ init: cur_pos, knowledge, frontier, path, exp_map, est_path	


while( length(frontier) != 0 &&  length(path) != MAX_PATH )	


	
 // make a move	


	
 cur_pos = est_path.pop();	


	
 frontier = closet_neig( cur_pos, map );	


	
 knowledge = union( knowledge, cur_pos, frontier );	


	
 // did the expected map fail ?	


	
 if( exist( map(frontier) != exp_map(frontier) ) )	


	
 	
 exp_map = build_expected_map( knowledge );	


	
 	
 est_path = build_estimated_path( exp_map );	


	
 endif	


endwhile

!16



Path finding and collaborative algorithm

• And knowledge ?	


• if knowledge is empty:	


• expected map fails 
frequently.	


• compute a lot of 
path.	


• if knowledge is the 
complete map:	


• build directly the 
true minimal path.

@ init: cur_pos, knowledge, frontier, path, exp_map, est_path	


while( length(frontier) != 0 &&  length(path) != MAX_PATH )	


	
 // make a move	


	
 cur_pos = est_path.pop();	


	
 frontier = closet_neig( cur_pos, map );	


	
 knowledge = union( knowledge, cur_pos, frontier );	


	
 // did the expected map fail ?	


	
 if( exist( map(frontier) != exp_map(frontier) ) )	


	
 	
 exp_map = build_expected_map( knowledge );	


	
 	
 est_path = build_estimated_path( exp_map );	


	
 endif	


endwhile

!17



Build expected map

• Prior model : the map is locally 
smooth.	


• local Gaussian curves with 
parameters estimated based 
on knowledge.	


• Pessimist agent	


• all positions that can not be 
estimate by model are 
assumed to be costy.	


• P(X=0) is high	


• Huge limitation ! (see later)

!18



Path Finding

• Path is defined between the current position and a goal.	


• We need to define the objective of our path based on the 
knowledge:	


• Simple agent: 	


• pos_max = positions of the first N max(exp_map),	


• goal: max( exp_map(pos_max) / dist(cur_pos,pos_max) )	


• Critical point ! (see later)	


• Plenty of algorithms may be investigated to actually compute 
this path: Dijkstra, A*, etc.

!19



Experiments

Inputs maps

Initial position is the center of the image	

Rich pollen area are black	

Initial knowledge is empty.



Simple Circle	

Without Randomness

entity 1, iter 1 entity 2, iter 1 both, iter 20



Simple circle:	

Without Randomness

entity 1, iter 1 entity 2, iter 1

entity 2, iter 10entity 1, iter 10



Complex circle

entity 2, 
iter 1

entity1,  
iter 1

iter 10 iter 50



Perspectives

• Add some randomness:	


• With a certain 
probability, explore an 
unknown position in 
close neighbourhood,	


• With a certain 
probability, define the 
goal as unknown 
position.	


• Define a different goal:	


• explore the map	


• 2 steps goals:	


• Exploration	


• Gathering



Few words about the full open source 
implementation

• World manager	


• NodeJS server: 200 lines script	


• Data base	


• CouchDB: 0 lines of codes	


• Server entities	


• NodeJS server: 50 lines script	


• Path finding	


• Octave code: 300 lines script

!25



Conclusion

• An interesting way to concretely enter in the Artificial 
Intelligence field.	


• Highlight the most critical points: 	


• What is Prior knowledge of unknown ?	


• What is the ration between exploring the map and 
gather pollen ?	


• What is the goal of an agent ?	


• minimal path with the maximal benefit.	


• Very easy to code!

!26


