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Context: autonomous production

Autonomous production




Context: acquisition infrastructure

Network



Context: why number recognition?

Tracking of players Control of active cameras

etc...



Color segmentation enables to isolate numbers for
number recognition
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How does color segmentation work ?
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K-means enables to partition N observations into K
clusters
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Each cluster represents a specific color




K-means problem setup

- Have N data points X1, ..., Xy withX, € RD

* Will build K clusters, presumably K << N

* Each cluster k has a cluster center (“centroid”) fix € RD

+ Have a dissimilarity measure ) : RPx RP- » R

* Problem is to assign a cluster label k, to Xi. ..., Xjy such that

k, = argmin, V (X,. fik).
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K-means algorithm

1) For/=1, ..., N, assign Xn
to its closest centroid /ik

2) Fork=1, ..., K, compute
as the mean of its assigned
data points {X, : k, = k}

3) Go to 1) until a stopping
criterion (number of
iterations, centroids don't
change,...) is met



K-means issues

* Number of clusters K has to be known in advance

* To extract a specific object, its color has to be known

‘ Necessity of apriori [Ravichandran, IJCAM, 2009]

* Computational complexity of (| K N D)

L» Dimension

—— Data points

» Clusters

» |terations
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Proposed solutions to k-means issues

* Learn apriori on multiple images of the same object

‘ Complexity ®( | K N D) increases because N
represents ONE pixel of ONE image

* Each image is represented by a vector of features (<# pix.)

Complexity ®( | K N D) decreases dramatically
because N represents ONE image times the
number of features (D)

) LEARNS APRIORI + SPEEDS UP COMPUTATIONS
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Once the object extracted, its recognition can be
done with a feature-based classifier

* Various supervised machine learning techniques

Inputs _| Non-linear parametric
regression model

Outputs

Parameter
adaptation

>

Desired outputs
(+ error criterion)

. _ . (3.256.256)
* If iInput = 256x256 8-bits color image = 256

possibilities

‘ Necessity to work with features!
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Support vector machine is a common classifier

* Unseparable data can become separable in higher dimensions

* The larger the margin, the lower the generalization error
X2 4

y
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Only players are interesting...

* Inputs (YUV422 or YUV420):

‘ Reject referees!
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Referees always have a black pant

* Histograms without background
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While players wear shorts

* Histograms without background
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Threshold the L, distance between peaks and
wanted color is efficient and fast

Player detection (input of the algorithm)

Threshold on L1
distance with black

y

Referee recognition (output of the algorithm)
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file:///media/VERLEYSEN/Doctorat/Presentations/Player_recognition/SPS_200411/Videos/Players_detection.avi
file:///media/VERLEYSEN/Doctorat/Presentations/Player_recognition/SPS_200411/Videos/Referee_recognition.avi

Principal color components can be noisy

1) Features to describe jerseys' principal color :
Y
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lllumination changes are concentrated

1) Features to describe jerseys' prinetpal color :

42

Change of illumination

128 255

Non_isolated_peak =  argmax (peak_value; - peak_basis;)
i € {peak;, peaks}
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Teams colors are learnt using NON-ISOLATED
histogram peak values of the jerseys

1) Features to describe jerseys' prinetpal color :

42

Change of illumination
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2) Accumulation of these features in YUV space and K-means

3) Planar separation between teams determinated by centroids
20



Recognition of the red team (untuned thresholds)

Video
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file:///media/VERLEYSEN/Doctorat/Presentations/Player_recognition/SPS_200411/Videos/Red_team_recognition.avi
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After knowing the color of the jersey, we can
segment the number

* Number should be the second principal color on the jersey

color extraction

i

5 \

‘ Remove jersey's color and apply principal
'I
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Relaxed constraints reject most of the non-number
parts

Relaxed relative
apriori on numbers

'

I

Stack-based flooding >
(4-connectivity)

°* Number relative width
°* Number relative height

> Number relative density
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To classify numbers, some features are necessary

* Constant size pictures

l---q g gl
R e _4
 Choosen features [Delannay and al., 3 ACM Dist. Cam., 2009]:
* Ratio height/width (before resizing)

* Number of holes [Dey and al., 13" conf. VLSI design, 2000]

Central moments m01, mlo, moz’ m20 and m22
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To classify numbers, some features are necessary
* Horizontal and vertical projections
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SVM discriminates between numbers
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Player's caracterization runs in real-time

* C program using Intel® Integrated Performance Primitives

* Worst-case computation time: 14 people on the same frame

‘ 9 ms per frame (Intel 17, 3 GHz, 8 Gb RAM)

* Performances of the classifier (SVM) on the trained template:

Real Prediction
70.3%
Number Number

8% 1.6%

B Equality

B Are predicted
Non number Non number
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Good recognition, but numbers are often considered
as non numbers

* C program using Intel® Integrated Performance Primitives

* Worst-case computation time: 14 people on the same frame

‘ 9 ms per frame (Intel 17, 3 GHz, 8 Gb RAM)

* Performances of the classifier (SVM) on a random match:

Real Prediction
90.5%
Number Number

71.3% 7.1%

B Equality

B Are predicted
Non number Non number
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False negatives comes from the training

* Font of numbers varies from a game to another !

* Train various transformations (rotation, sheering, resizing,...) of
one font is not sufficient for generalization

Training Real game

SO

Y ,..i.i




Recognition of player 5 of the red team

Video
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file:///media/VERLEYSEN/Doctorat/Presentations/Player_recognition/SPS_200411/Videos/Player_5_red.avi

Conclusion and perspectives

* Color segmentation enables to extract a specific object if we
know an apriori on its color(s)

* Apriori can be learnt from images of the same object (more
robust if colorimetry adjustment has already been done)

* Color feature extraction dramatically speeds-up segmentation
* Non-isolated histogram peaks are robust color features

* Mixing color segmentation and feature-based classification can
give a powerful OCR

* Feature-based classifier has to be trained with various fonts of
number and with very discriminative number features
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