

Compressive Independent Component Analysis

Michael P. Sheehan IDCOM, University of Edinburgh

Joint work with Mike E. Davies and Madeleine Kotzagiannidis

Outline

- 1. Compressive Learning
- 2. Compressive ICA
 - i. Independent Component Analysis
 - ii. Motivation
 - iii. Theory
 - iv. Inverse Problem

3. Results

- i. Phase Transition
- ii. Toy Example

4. Outlook

1. Compressive Learning

Challenges

 Dataset has to be stored in memory

Large Scale Learning

What if d or n is large?

- 2. Computation complexity may scale with the dataset dimensions
- 3. Amenable to online/distributed learning ?

a) Original

- e.g. Feature Selection, Random Projection
- Does not compress the number of data points n

b) Dimensionality Reduction

Compression Schemes

- e.g. sampling, Nystrom, coresets
- Does not compress the feature space
- Could potentially discard important items

m

Z

Linear Sketches

- The sketch has dimension m << n d
- The size *m* typically scales independent of *n* and *d*
- Amenable to online learning

Compressive learning: How do we form the sketch ?

n $x_1 \quad x_2$ χ_3 x_n *x*₁

• We pass each data point x_i through a feature function $\Phi: \mathbb{R}^d \to \mathbb{C}^m$

Compressive learning: How do we form the sketch ?

 $x_1 x_2 x_3 \dots x_n$

*x*₂

n

• We pass each data point x_i through a feature function $\Phi: \mathbb{R}^d \to \mathbb{C}^m$

 $x_1 \quad x_2$

 \bigcap

n

 x_n

*x*₃

 χ_3

Compressive learning: How do we form the sketch ?

• We pass each data point x_i through a feature function $\Phi: \mathbb{R}^d \to \mathbb{C}^m$

$$\left[\Phi(\mathbf{A}), \Phi(\mathbf{A})\right]$$

 $x_1 \quad x_2$

n

 x_n

 x_n

 χ_3

Compressive learning: How do we form the sketch ?

• We pass each data point x_i through a feature function $\Phi \colon \mathbb{R}^d \to \mathbb{C}^m$

$$\left[\Phi(\mathbf{A}), \Phi(\mathbf{A}), \Phi(\mathbf{A})\right]$$

Compressive learning: How do we form the sketch ?

We then pool and $\Phi(\mathbf{x}), \Phi(\mathbf{x}), \Phi(\mathbf{x}), \Phi(\mathbf{x}), \dots, \Phi(\mathbf{x})$ average the feature function of each data point to form the sketch n x_i т Z

т

Ζ

Compressive learning: How do we form the sketch ?

Advantages

- Only the sketch of size
 m has to be stored in
 memory
- Typically, $m \ll nd$
- Easily amenable to online and distributed learning

How do we learn from a sketch?

- We want to learn the parameters θ of the learning model $\pi_{\theta} \in \mathcal{P}$ where $x \sim \pi_{\theta}$
- Similar to moment matching, we match the sketch with it's expectation

$$\min_{\theta \in \Theta} \|z - \mathbb{E}_{x \sim \pi_{\theta}} \Phi(x)\|$$
Sketch (empirical moment) True moment

Compressive Learning: How is it possible?

- Sketch reformulation: $\mathcal{A}(\pi_{\theta}) \coloneqq \mathbb{E}_{x \sim \pi_{\theta}} \Phi(x)$
- $\mathcal{A}: \mathcal{P} \rightarrow \mathbb{R}^m$ equivalently a linear operator acting the model

Compressive Learning: How is it possible?

Low dimensional Manifold

Low Rank

Sparsity

What has compressive learning achieved so far?

1. Compressive k means

• Model set \mathfrak{S} π_{θ} : k centres c_1, c_2, \dots, c_k

• Feature Function $\Phi(x) = \left(\frac{e}{x}\right)$

$$\left(\frac{e^{i\omega_j^T x}}{w \,\omega_j}\right)_{j=1}^{m}$$

• Sketch Size $m \approx \mathcal{O}(kd)$

"Compressive Statistical Learning with Random Feature Moments" Gribonval et. al. 2020

What CL has achieved so far?

1. Compressive k means

2. Compressive GMM

- Model 0 Model 1
- **Model set** \mathfrak{S} π_{θ} : mixture of k Gaussians

• Feature Function
$$\Phi(x) = \left(e^{i\omega_j^T x}\right)_{i=1}^m$$

• Sketch Size $m pprox \mathcal{O}(\mathsf{kd})$

What CL has achieved so far?

1. Compressive k means

2. Compressive GMM

3. Compressive PCA

• Model set $\mathfrak{S}_{\theta}: k$ dimensional subspace - $(\operatorname{rank}(\Sigma_{\pi_{\theta}}) \leq k)$

Gene 2

- Feature Function $\Phi(x) = \langle a_j, xx^T \rangle_{j=1}^m$
- Sketch Size $m pprox \mathcal{O}(\mathsf{kd})$

Gene 3

"Compressive Statistical Learning with Random Feature Moments" Gribonval et. al. 2020

Independent Component Analysis

- ICA is a method to identify latent variables that are mutually independent to one another.
- Applications: Blind source separation, EEG recordings, financial modelling, telecommunications
- Given a dataset $X = (x_1, x_2, ..., x_n) \in \mathbb{R}^{n \times d}$

•
$$S = (s_1, s_2, \dots, s_n) \in \mathbb{R}^{n \times d}$$

• Mixing matrix
$$\boldsymbol{Q} \in \mathbb{R}^{d imes d}$$

Independent Component Analysis

ICA assumptions

• Each source signal $s = (s_1, s_2, ..., s_d)$ in time has components that are mutually independent:

$$\pi(\mathbf{s}) = \prod_{i=1}^d \pi_i(s_i)$$

• The individual distributions are assumed non-Gaussian but left unspecified (Semi-parametric)

How do we estimate Q?

 $\hat{s} = \hat{Q}^T x$

Measures of independence

- Mutual information
- KL divergence
- Kurtosis (cumulant based methods)

Cumulant Based ICA (Kurtosis)

The 4^{th} order cumulant (kurtosis) of a \boldsymbol{x} is defined as

$$\left(\mathcal{X}_{\pi_{\theta}}\right)_{ijkl} = \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{j}x_{k}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{j}\right]\mathbb{E}_{\pi_{\theta}}\left[x_{k}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{k}\right]\mathbb{E}_{\pi_{\theta}}\left[x_{j}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}\right]\mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}x_{l}x_{l}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}x_{l}x_{l$$

In our multivariate setting, the 4th order cumulant gives rise to a 4th order tensor $\mathcal{X}_{\pi_{\theta}} \in \mathbb{R}^{d \times d \times d \times d}$

<u>Note</u>

- . The diagonal entries $\left(\mathcal{X}_{\pi_{ heta}}
 ight)_{iiii}$ auto-cumulants
- 2. The off-diagonal entries $(\chi_{\pi_{\theta}})_{ijkl}$ are the cross-cumulants

 $\widehat{s} = \widehat{Q}^T x$

Cumulant Based ICA (Kurtosis)

The 4^{th} order cumulant (kurtosis) of a x is defined as

 $\left(\mathcal{X}_{\pi_{\theta}}\right)_{ijkl} = \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{j}x_{k}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{j}\right]\mathbb{E}_{\pi_{\theta}}\left[x_{k}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{k}\right]\mathbb{E}_{\pi_{\theta}}\left[x_{j}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}\right]\mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}x_{l}x_{l}x_{l}x_{l}\right] - \mathbb{E}_{\pi_{\theta}}\left[x_{i}x_{l}x_{l}x_{l}x_{l$

- In our multivariate setting, the 4th order cumulant gives rise to a 4th order tensor $\mathcal{X}_{\pi_{\theta}} \in \mathbb{R}^{d \times d \times d \times d}$ Note <u>Zero</u> when
- .. The diagonal entries $\left(arX_{\pi_{ heta}}
 ight)_{iiii}$ auto-cumulants
 - The off-diagonal entries $\left(\chi_{\pi_{ heta}}
 ight)_{ijkl}$ are the cross-cumulants

independent

 $\widehat{s} = \widehat{Q}^T x$

 $\hat{\mathcal{S}} = \mathcal{X}_{\pi_{\theta}} \times_{1} \widehat{\boldsymbol{Q}}^{T} \times_{2} \widehat{\boldsymbol{Q}}^{T} \times_{3} \widehat{\boldsymbol{Q}}^{T} \times_{4} \widehat{\boldsymbol{Q}}^{T}$

is **diagonal**

• The geometry of the cumulant tenors gives rise to a natural model set:

$$\mathfrak{S} = \{ \pi_{\theta} \mid \mathcal{X}_{\pi_{\theta}} = \mathcal{S} \times_{1} \mathbf{Q} \times_{2} \mathbf{Q} \times_{3} \mathbf{Q} \times_{4} \mathbf{Q} \}$$

• The geometry of the cumulant tenors gives rise to a natural model set:

$$\mathfrak{S} = \{ \pi_{\theta} \mid \mathcal{X}_{\pi_{\theta}} = \mathcal{S} \times_{1} \mathbf{Q} \times_{2} \mathbf{Q} \times_{3} \mathbf{Q} \times_{4} \mathbf{Q} \}$$

Diagonal Tensor with *d* <u>degrees of freedom</u>

• The geometry of the cumulant tenors gives rise to a natural model set:

$$\mathfrak{S} = \{ \pi_{\theta} \mid \mathcal{X}_{\pi_{\theta}} = \mathcal{S} \times_{1} \mathbf{Q} \times_{2} \mathbf{Q} \times_{3} \mathbf{Q} \times_{4} \mathbf{Q} \}$$

Diagonal Tensor with *d* <u>degrees of freedom</u> Orthogonal matrix with $\frac{d(d-1)}{2}$ degrees of freedom

• The geometry of the cumulant tenors gives rise to a natural model set:

 $\mathfrak{S} = \{ \pi_{\theta} \mid \mathcal{X}_{\pi_{\theta}} = \mathcal{S} \times_{1} \mathbf{Q} \times_{2} \mathbf{Q} \times_{3} \mathbf{Q} \times_{4} \mathbf{Q} \}$ Orthogonal matrix **Diagonal Tensor with** Total of $\frac{d(d+1)}{d(d+1)}$ d degrees of freedom with $\frac{d(d-1)}{2}$ degrees of degrees of freedom freedom

• The geometry of the cumulant tenors gives rises to a natural model set:

$$\tilde{\boldsymbol{\varepsilon}} = \{ \pi_{\theta} \mid \boldsymbol{\mathcal{X}}_{\pi_{\theta}} = \boldsymbol{\mathcal{S}} \times_{1} \boldsymbol{\boldsymbol{\mathcal{Q}}} \times_{2} \boldsymbol{\boldsymbol{\mathcal{Q}}} \times_{3} \boldsymbol{\boldsymbol{\mathcal{Q}}} \times_{4} \boldsymbol{\boldsymbol{\mathcal{Q}}} \}$$

• \mathfrak{S} is a low dimension model set residing in $\mathbb{R}^{d \times d \times d \times d}$

• The geometry of the cumulant tenors gives rises to a natural model set:

$$\tilde{\boldsymbol{S}} = \{ \boldsymbol{\pi}_{\theta} \mid \boldsymbol{\mathcal{X}}_{\boldsymbol{\pi}_{\theta}} = \boldsymbol{\mathcal{S}} \times_{1} \boldsymbol{\boldsymbol{\mathcal{Q}}} \times_{2} \boldsymbol{\boldsymbol{\mathcal{Q}}} \times_{3} \boldsymbol{\boldsymbol{\mathcal{Q}}} \times_{4} \boldsymbol{\boldsymbol{\mathcal{Q}}} \}$$

- residing in $\mathbb{R}^{d imes d imes d imes d}$
 - Can we exploit the structure/sparsity of $\mathcal{X}_{\pi_{\theta}}$ to from a sketch?

 \mathfrak{S} is a low dimension model set

Compressive ICA: Forming the Sketch

- Feature function: $\Phi(x) = \langle a_j, x \otimes x \otimes x \otimes x \rangle_{j=1}^m$
- Equivalent Sketching Operator: $\mathcal{A}(\chi_{\pi_{\theta}}) = A \operatorname{vec}(\chi_{\pi_{\theta}})$ where $A \in \mathbb{R}^{m \times d^4}$ is a random (sub) Gaussian matrix

c.f. compressive sensing

Compressive ICA: Forming the Sketch

- Feature function: $\Phi(x) = \langle a_j, x \otimes x \otimes x \otimes x \rangle_{j=1}^m$
- Equivalent Sketching Operator: $\mathcal{A}(\mathcal{X}_{\pi_{\theta}}) = \mathbf{A} \operatorname{vec}(\mathcal{X}_{\pi_{\theta}})$ where $\mathbf{A} \in \mathbb{R}^{m \times d^4}$ is a random (sub) Gaussian matrix

Recall:
$$\mathbf{z} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{x}_i)$$

Compressive ICA: Forming the Sketch

- Feature function: $\Phi(x) = \langle a_j, x \otimes x \otimes x \otimes x \rangle_{j=1}^m$
- Equivalent Sketching Operator: $\mathcal{A}(\mathcal{X}_{\pi_{\theta}}) = A \operatorname{vec}(\mathcal{X}_{\pi_{\theta}})$ where $A \in \mathbb{R}^{m \times d^4}$ is a random (sub) Gaussian matrix

Recall:
$$\mathbf{z} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{x}_i)$$

Inverse Problem

$$\min_{\mathcal{X}_{\pi_{\theta}} \in \mathfrak{S}} \left\| \mathbf{z} - \mathcal{A}(\mathcal{X}_{\pi_{\theta}}) \right\|$$

Compressive ICA Restricted Isometry Property

Let $A_{ij} \sim N(0, \sqrt{m^{-1}})$, then for any $\xi, \delta \in (0,1)$ and $\mathcal{X}_{\pi_{\theta}} \in \mathfrak{S}$, we have

$$(1-\delta) \left\| \mathcal{X}_{\pi_{\theta_1}} - \mathcal{X}_{\pi_{\theta_2}} \right\|_F^2 \le \left\| \mathcal{A} \left(\mathcal{X}_{\pi_{\theta_1}} - \mathcal{X}_{\pi_{\theta_2}} \right) \right\|_2^2$$

Compressive ICA Restricted Isometry Property

Let $A_{ij} \sim N(0, \sqrt{m^{-1}})$, then for any $\xi, \delta \in (0,1)$ and $\mathcal{X}_{\pi_{\theta}} \in \mathfrak{S}$, we have

$$(1-\delta) \left\| \mathcal{X}_{\pi_{\theta_1}} - \mathcal{X}_{\pi_{\theta_2}} \right\|_F^2 \le \left\| \mathcal{A} \left(\mathcal{X}_{\pi_{\theta_1}} - \mathcal{X}_{\pi_{\theta_2}} \right) \right\|_2^2$$

with prob. $1 - \xi$ provided that the sketch size

$$m \ge \frac{C}{\delta^2} \max\left\{ 4d(d+1)\log(6), \log(\frac{6}{\xi}) \right\}$$

38/71

Compressive ICA Restricted Isometry Property

 $m \ge \frac{C}{\delta^2} \max\left\{4d(d+1)\log(6), \log(\frac{6}{\xi})\right\}$

Constrained Optimization $\min_{\mathcal{X}_{\pi_{\theta}} \in \mathfrak{S}} \| \boldsymbol{z} - \mathcal{A}(\mathcal{X}_{\pi_{\theta}}) \|$

 We propose an iterative projection gradient descent scheme to solve the OP

Constrained Optimization $\min_{\mathcal{X}_{\pi_{\theta}} \in \mathfrak{S}} \| \boldsymbol{z} - \mathcal{A}(\mathcal{X}_{\pi_{\theta}}) \|$

- We propose an iterative projection gradient descent scheme to solve the OP
- After each gradient step, we project onto the model set \mathfrak{S}

- We propose an iterative projection gradient descent scheme to solve the OP
- After each gradient step, we project onto the model set \mathfrak{S}
- Akin to Compressive Sensing (hard thresholding onto the sparse set)

 $\min_{\boldsymbol{\mathcal{X}}_{\pi_{\theta}} \in \boldsymbol{\mathfrak{S}}} \| \boldsymbol{z} - \mathcal{A}(\boldsymbol{\mathcal{X}}_{\pi_{\theta}}) \|$

Constrained Optimization $\min_{\mathcal{X}_{\pi_{\theta}} \in \mathfrak{S}} \| \boldsymbol{z} - \mathcal{A}(\mathcal{X}_{\pi_{\theta}}) \|$

- We propose an iterative projection gradient descent scheme to solve the OP
- After each gradient step, we project onto the model set \mathfrak{S}
- Akin to Compressive Sensing (hard thresholding onto the sparse set)

- We propose an iterative projection gradient descent scheme to solve the OP
- After each gradient step, we project onto the model set \mathfrak{S}
- Akin to Compressive Sensing (hard thresholding onto the sparse set)

 $\min_{\boldsymbol{\mathcal{X}}_{\pi_{\theta}} \in \boldsymbol{\mathfrak{S}}} \| \boldsymbol{z} - \mathcal{A}(\boldsymbol{\mathcal{X}}_{\pi_{\theta}}) \|$

- We propose an iterative projection gradient descent scheme to solve the OP
- After each gradient step, we project onto the model set \mathfrak{S}
- Akin to Compressive Sensing (hard thresholding onto the sparse set)

 $\min_{\boldsymbol{\mathcal{X}}_{\pi_{\theta}} \in \boldsymbol{\mathfrak{S}}} \left\| \boldsymbol{z} - \mathcal{A}(\boldsymbol{\mathcal{X}}_{\pi_{\theta}}) \right\|$

- We propose an iterative projection gradient descent scheme to solve the OP
- After each gradient step, we project onto the model set \mathfrak{S}
- Akin to Compressive Sensing (hard thresholding onto the sparse set)

 $\mathbb{R}^{d \times d \times d \times d}$ $\chi^{(1)}$ $\chi^{(2)}$ 46/71

 $\min_{\boldsymbol{\mathcal{X}}_{\pi_{\theta}} \in \boldsymbol{\mathfrak{S}}} \left\| \boldsymbol{z} - \mathcal{A}(\boldsymbol{\mathcal{X}}_{\pi_{\theta}}) \right\|$

3. Results

Compressive ICA RIP in Practice

Compressive ICA RIP: $m \approx O(d(d+1))$

Experiment 1

- We mix the cumulant tensor of d = 7 sources signals by a known mixing matrix Q to construct $\chi_{\pi_{\theta}}$.
- For varying sketch sizes m, we compute the sketch and obtain the estimate \widehat{Q} using the IPG algorithm.
- Consider the estimation successful if $D(Q, \hat{Q}) \le 10^{-7}$, where *D* is the Amari error/distance.

Compressive ICA RIP in Practice Compressive ICA RIP: $m \approx \mathcal{O}\big(d(d+1)\big)$ 1 m = 760.8 0.6 Success 0.4 Sketch Size Success - Model Set Dimension 0.2 - Original Dimension 50 100 150 200 250

Compressive Sketch Size m

50/71

Compressive ICA RIP in Practice

Compressive ICA RIP: $m \approx O(d(d+1))$

Compressive ICA RIP in Practice

How efficient are sketches?

Experiment 2

- d = 7 source signals mixed by Q
- Measure the average Amari error $D(Q, \widehat{Q})$ over 1000 trials
- Plotted as function of the number of data points *n*

How efficient are sketches?

Sketch size is not sufficient so fails.

How efficient are sketches?

The mean Amari error of the sketch converges toward the full data error.

Toy Example

Toy Example

Mixed Sources (Microphone Recordings)

SUITION

Summar

The University of Edinburgh

50000 M

	Method	Amari Error	Space Complexity
	Fast ICA (recourse to data)	0.4087	$5 \times 16000 \text{ Data}$ matrix $d \qquad x_1 x_2 x_3 \dots x_n$
0	Cumulant based ICA (no Compression)	0.4129	$5 \times 5 \times 5 \times 5$ cumulant Tensor (70 DoF)
	Compressive ICA	0.4156	m = 38 size sketch Z

Limitations

- In general it is difficult to find closed form projections onto model sets
- Here we use a proxy projection, where we first *partially* diagonalise the cumulant tensor using existing techniques and then threshold the cross cumulants to zero.
- As a result, the computational complexity is equivalent to other cumulant based method

Summary

- We have shown that a low dimensional model set exists in the space of cumulant tensors for the ICA problem
- As a result, we can form sketches that are of the order of the model set to estimate the parameters of the ICA model
- The memory complexity is reduced from $\mathcal{O}(d^4)$ to $\mathcal{O}(d(d+1))$

Outlook

- Seek a cheaper projection operator or proxy that exhibits a computational complexity that scales with *m*
- Quantify theoretically the controlled loss of information/efficiency of taking a sketch of size *m*
- Can we leverage other sufficient statistics to produce sketches from when the distribution, like ICA, is left unspecified?

Thank you for your attention!

Any questions?

