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1. Compressive
Learning
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Large Scale Learning

What if d or n is large?

4

Challenges

Dataset has to be stored in
memory

Computation complexity may scale
with the dataset dimensions

Amenable to online/distributed
learning ?
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a) Original

Compression Schemes
n

e e.g. Feature Selection, Random Projection

* Does not compress the number of data
points n
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Compression Schemes

!

n

e e.g.sampling, Nystrom, coresets
* Does not compress the feature space

* Could potentially discard important items
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c) Subsampling

Linear Sketches

* The sketch has
dimensionm <K nd

* The size m typically
scales independent of n
7 and d

 Amenable to online
learning
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Compressive learning: How do we
form the sketch ?

* We pass each data point
x; through a feature
function ®: R? - C™
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Compressive learning: How do we
form the sketch ?

' * We then pool and

[CD(), O(k) ,CD(Q) . CD()] average the feature

function of each
data point to form
the sketch

AREEIX-I()
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Compressive learning: How do we
form the sketch ?

Advantages

* Only the sketch of size
m has to be stored in

n
1
o)

Typically, m < nd

e Easily amenable to
online and distributed

learning
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How do we learn from a sketch?

* We want to learn the parameters 0 of the learning model
Tg € P where x ~ 1y

B + Similar to moment matching, we match the sketch with it’s
expectation

minHz — *anHCID(x)H

96(9/ \

Sketch (empirical moment) True moment
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Compressive Learning: How is it possible?

b& « Sketch reformulation: A(1g) = By, P(x)

z ¢ A: P->R™ equivalently a linear operator acting the model

minl|lz — A(r
min||z — A(p)|

\ Constrained model set
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Compressive Learning: How is it possible?

min ||z — A(
min||z — A(p)|

/ Low Rank
S N

Sparsity
Low dimensional Manifold
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What has compressive learning achieved
so far?

1. Compressive k means W

* Modelset & my: k centres ¢4, ¢y, ..., C

wwj .

eiw}wx m
* Feature Function ®(x) =
)=1

* Sketch Size m = O(kd)

”Compressive Statistical Learning with Random 18/71
Feature Moments” Gribonval et. al. 2020




T T
*  Model 0
Model1

1. Compressive k means

2. Compressive GMM

Model set & my: mixture of k Gaussians

. T NI
Feature Function @(x) = (e“‘)fx)
j=1

Sketch Size m = O(kd)

”Compressive Statistical Learning with Random 19/71
Feature Moments” Gribonval et. al. 2020




1. Compressive k means

2. Compressive GMM

3. Compressive PCA

”Compressive Statistical Learning with Random
Feature Moments” Gribonval et. al. 2020

‘\'.:. =
PFCZ b o

......

Cigna 2 Giong 1

=l

Model set & my: k dimensional
subspace - (rank(Zne) < k)

] m
Feature Function @(x) = (aj'xxT>j=1
Sketch Size m =~ O(kd)
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2. Compressive
ICA
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Dataset

«  Mixing matrix Q € R*d

X=0S -

/

Mixing Matrix

Independent Component Analysis

* |ICAis a method to identify latent variables that are mutually
independent to one another.

* Applications: Blind source separation, EEG recordings, financial
modelling, telecommunications

« Given adataset X = (x4, X3, ..., X,,) € R™*¢
e S= (Sl, S92, ...,Sn) € RnXd

/
Goal

Estimate Q from X

\

)

™~

Independent
Components
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Independent Component Analysis

10 H

-104_,

10 4

-101

10 4
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5
T T T T T T T T I ‘ A T T T T T T T T T T
5 4
| QMF IM' Ihllm"ll lﬁ%“ﬂ o W
T T T T T T T T =5 4+ T T T T T T T T
5 4
! ' o
T T T T T T T T T =51 T T T T T T T T
o] 250 500 750 1000 1250 1500 1750 2000 o] 250 500 750 1000 1250 1500 1750 2000

ICA assumptions
* Each source signal s = (54, 53, ..., S4) in time has

components that are mutually independent:
d

n(s) = | [msn

i=1
* The individual distributions are assumed non-
Gaussian but left unspecified (Semi-parametric)
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How do we estimate Q?

Maximize the § — aTx

. independence §

Optimise Q

Measures of independence
 Mutual information
* KL divergence
e Kurtosis (cumulant based
methods) 24/71
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Cumulant Based ICA (Kurtosis)

The 4t order cumulant (kurtosis) of a x is defined as

(Xne)ijkl = ]ETL'Q [xixjxkxl] - ]ETL'Q [xixj]IEﬂg [xkxl] _]ETL'Q [xixk]]ETtg [xj‘xl]_]ETtg [xixl]IEng [ijk]

In our multivariate setting, the 4t order cumulant gives rise to a 4t
order tensor X, € RA*dxdxd

Note

~auto-cumulants
LiLl

The diagonal entries (Xﬂe)

2. The off-diagonal entries (Xne)ijkl are the cross-cumulants
25/71
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Cumulant Based ICA (Kurtosis)

The 4t order cumulant (kurtosis) of a x is defined as

(Xne)ijkl = ]ETL'Q [xixjxkxl] - ]ETL'Q [xixj]IEﬂg [xkxl] _]ETL'Q [xixk]]ETtg [xj‘xl]_]ETtg [xixl]IEng [ijk]

In our multivariate setting, the 4t order cumulant gives rise to a 4t
order tensor X, € RA*dxdxd

* Note

1. The diagonal entries (Xﬂe)

Zero when

independent

~auto-cu S
IRRAA

2. The off-diagonal entries (Xne)ijkl are the cross-cumulants
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GOAL

— il Optimize Q such that

& _ AT « AT «. AT « OT
O =Xp, X1 Q" X2Q" X3Q° X4 Q

s diagonal
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Compressive ICA

* The geometry of the cumulant tenors gives
rise to a natural model set:

. S = {1 | Xy =S X1 Q X, Q X3 Q %, Q}
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Compressive ICA

* The geometry of the cumulant tenors gives
rise to a natural model set:

. S = {1 | Xy =S X1 Q X, Q X3 Q %, Q}

Diagonal Tensor with
d degrees of freedom
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Compressive ICA

* The geometry of the cumulant tenors gives
rise to a natural model set:

S = (70 | X, = S X1 QX2 Q X3 Q X4 Q)

LN\

Diagonal Tensor with Orthogonal matrix
d degrees of freedom with 22D decrees of
2
freedom

30/71




“ r The University of Edinburgh

Compressive ICA

* The geometry of the cumulant tenors gives
rise to a natural model set:

={Tg | Xy =5 X1 Q X3 Q X3 Q X4 Q}

LN\

| 2@ Diagonal Tensor with Orthogonal matrix
*~ Total of > d degrees of freedom with d(dz_l) degrees of
degrees of freedom freedom
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Compressive ICA

* The geometry of the cumulant tenors gives
rises to a natural model set:

‘ '6={n9 | Xg =0 X1 Q@ X3 Q X3 Q X4 Q}

e GSisalow dimension model set
residing in R&Xdxaxd

) Total of d(d + 1)
degrees of freedom
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Compressive ICA

* The geometry of the cumulant tenors gives
rises to a natural model set:

e GSisalow dimension model set
residing in R&xdxadxd

* Can we exploit the structure/sparsity
of X7, to from a sketch? /

33/71

) Total of d(d + 1)
degrees of freedom
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Compressive ICA: Forming the Sketch

*. * Feature function: ®(x) = (aj,x RxR xR x)

m
j=1

* Equivalent Sketching Operator: A (X, ) = Avec(Xy,)

4 . .
where 4 € R™*2" js a random (sub) Gaussian matrix

c.f. compressive
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Compressive ICA: Forming the Sketch

*. * Feature function: ®(x) = (aj,x RxR xR x)

m
j=1

* Equivalent Sketching Operator: Jl(x,w) = Avec(Xr,)

4 . .
where 4 € R™*2" js a random (sub) Gaussian matrix

ecall: z = - Y7, O(x;)
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Compressive ICA: Forming the Sketch

: * Feature function: ®(x) = (aj,x RxR xR x)

m
j=1

s °© Cquivalent Sketching Operator: A(Xy, ) = Avec(Xy,)

4 . .
where 4 € R™*2" js a random (sub) Gaussian matrix

Inverse Problem
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Compressive |ICA Restricted Isometry Property

Let A;; ~ N(0,vm™1), thenforany ¢, 6 €
(0,1) and X, € &, we have
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Compressive |ICA Restricted Isometry Property

Let A;; ~ N(0,vm™1), thenforany ¢, 6 €
(0,1) and X, € &, we have

with prob. 1 — ¢ provided that the sketch size

>£ 4d(d + 1) log(6),1 9
m 2~ max ( ) log ;Og(f)
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Compressive |ICA Restricted Isometry Property

m = O(d(d + 1))

m > %max {4d(d + 1) log(6) ,log(?)}
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Constrained Optimization

mip_ ||z = A (X, )

* We propose an iterative
projection gradient descent
scheme to solve the OP
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The University of Edinburgh

Constrained Optimization

mip_ ||z = A (X, )|

* We propose an iterative
projection gradient descent
scheme to solve the OP

* After each gradient step, we
project onto the model set &

* Akin to Compressive Sensing \ Projection Step
(hard thresholding onto the : P<(X)
sparse set)
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Constrained Optimization

* We propose an iterative
projection gradient descent
scheme to solve the OP

* After each gradient step, we
project onto the model set &

* Akin to Compressive Sensing
(hard thresholding onto the
sparse set)

m— 46/71
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3. Results
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Compressive ICA RIP in Practice

Compressive ICA RIP:

Experiment 1 m ~ 0(d(d + 1))

 We mix the cumulant tensor of d = 7 sources signals
known mixing matrix @ to construct X .

Oy a

* For varying sketch sizes m, we compute the sketch and
obtain the estimate Q using the IPG algorithm.

* Consider the estimation successful if D(Q, Q) <1077,

where D is the Amari error/distance.
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Compressive ICA RIP in Practice

Compressive ICA RIP:
m ~ 0(d(d + 1))

I — A -,
- T
@ !
| m = 76 !
08l I @ !
| [
i
| i
0.6 1 O !
[ 2]
2 | @ !
S| |
N4t 1 O
I O Sketch Size Success
I . -
0.2k I O = =NModel Set Dimension |
|
I === Original Dimension
S ' ' 1
0 50 100 150 200 250

Compressive Sketch Size m 49/71
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Compressive ICA RIP in Practice

Compressive ICA RIP:
m ~ 0(d(d + 1))

I (A .,
. 1
@ i
I m = 76 !
08 I @ !
| I
1
| |
0.6 1 O !
un
| @ |
= ! ' Phase
S04 1 O T~~~ transition
I O Sketch Size Success
I . -
0.2k I O == =Model Set Dimension |
I
I === Original Dimension
S ' ' 1
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Compressive Sketch Size m 50/71




Sketch Size m

200

160 |

120 |

——m = d(d+ 1)
——n = gd(r'}. +1)
—e Original Dimension

-5 Model Set Dimension

Number of Sources (

- 0.75

Success

0.25

Compressive ICA RIP:

m = O(d(d + 1))
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Compressive ICA RIP:

; m =~ O(d(d + 1))
—a—m = d(d+ 1) /
=]
i _ /
200 ——Tn = gd(d +1) ’
’ = 0.75
)
=~ 160 | |—® Original Dimension ’/
o !/
) /
% -5~ Model Set Dimension / 0e g
g S
B A
w2
0.25 — Phase transition
occurs around
m = 2d(d + 1)
0

Number of Sources
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Compressive ICA RIP:

; m =~ O(d(d + 1))
—a—m = d(d+ 1) /
=]
- ; /
200 —y—m = gd(d+ 1) ’
’ - 0.75
/
=~ 160 | |—® Original Dimension ’/ ]
; ¥ In practice the
% — = Model Set Dimension / & order is =~ 25
= 05 9
o S
g N
o S
0.25 — Phase transition
occurs around
m=2d(d+1)
0

Number of Sources
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: N Experiment 2

d = 7 source signals
mixed by Q

Measure the average

Amari error D(Q, Q)
over 1000 trials

Plotted as function of
the number of data
points n

log;y Mean Amari Distance

o

—= 7. = 30
—= 11 = 4{)
m = 50

—@= 1 = 6()

=0 =Full Data (no compression)




—= 1. = 3()

— 7. = 40

) m = 50

; . . % —@—1m = 60
i Sketch size is 7 15

=0 =Full Data (no compression)

not sufficient so
faiIS.

|
N
on

log;y Mean Amari




The mean Amari
8 error of the sketch =

o

converges toward
the full data error.

log;y Mean Amdri Distance

=11 = 3()
—= 11 = 4{)

m = 50
—o—m = 60

=0 =Full Data (no compression)




57/71




58/71




59/71




Independent Sources

-1

I
0 4000 8000 12000 16000

|
0 4000 8000 12000 16000

0 4000 8000 12000 16000

4 | |
0 4000 8000 12000 16000

60/71




University of Edinburgh

Mixed Sources (Microphone Recordings)
T ) T ] | T
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True Source Signal
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True Source Signal
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True Source Signal
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True Source Signal
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True Source Signal
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Method Amari Error Space Complexity
Fast ICA 0.4087 -
(recourse to 5 X 16000 Data 1 ks )
data) matrix 0 T
Cumulant based 0.4129 5% 5% 5 x5
ICA (”O_ cumulant
Compression) Tensor (70 DoF)
Compressive 0.4156 ) m X
size sketch V4

67/71




: The University of Edinburgh

Limitations

* |n generalitis difficult to find closed form
projections onto model sets

* Here we use a proxy projection, where we first
partially diagonalise the cumulant tensor using
existing techniques and then threshold the cross
cumulants to zero.

* As aresult, the computational complexity is
equivalent to other cumulant based method
68/71
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Summary

 We have shown that a low dimensional model set
exists in the space of cumulant tensors for the ICA
problem

e As aresult, we can form sketches that are of the
order of the model set to estimate the parameters
of the ICA model

* The memory complexity is reduced from 0(d*) to
0(d(d + 1))
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Outlook

* Seek a cheaper projection operator or proxy that
exhibits a computational complexity that scales with
m

* Quantify theoretically the controlled loss of
information/efficiency of taking a sketch of size m

 Can we leverage other sufficient statistics to
produce sketches from when the distribution, like
ICA, is left unspecified?
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Thank you for your attention!

Any questions?
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