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1. Compressive 
Learning
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• Classification

• Regression

• Parameter 
estimation

Learning

Recourse
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Challenges

1. Dataset has to be stored in 
memory

2. Computation complexity may scale 
with the dataset dimensions

3. Amenable to online/distributed 
learning ?

What if 𝑑 or 𝑛 is large?

Large Scale Learning
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Compression Schemes

a) Original

• e.g. Feature Selection, Random Projection

• Does not compress the number of data 
points 𝒏
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Compression Schemes

a) Original

b) Dimensionality Reduction

• e.g. sampling, Nystrom, coresets

• Does not compress the feature space 

• Could potentially discard important items
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Linear Sketches

a) Original

b) Dimensionality Reduction

c) Subsampling

• The sketch has 
dimension 𝒎 ≪ 𝒏 𝒅

• The size 𝒎 typically 
scales independent of 𝒏
and 𝒅

• Amenable to online 
learning
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Compressive learning: How do we 
form the sketch ?

• We pass each data point 
𝒙𝒊 through a feature 
function 𝚽:ℝ𝒅 → ℂ𝒎
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Compressive learning: How do we 
form the sketch ?

[ ], , ,

• We pass each data point 
𝒙𝒊 through a feature 
function 𝚽:ℝ𝒅 → ℂ𝒎
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[ ], , ,…,

= 

𝑖=1

𝑛

𝑥𝑖Φ( )
1

𝑛

• We then pool and 
average the feature 
function of each 
data point to form 
the sketch

Compressive learning: How do we 
form the sketch ?
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Compressive learning: How do we 
form the sketch ?

Advantages

• Only the sketch of size 
𝑚 has to be stored in 
memory

• Typically, 𝑚 ≪ 𝑛𝑑

• Easily amenable to 
online and distributed 
learning
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How do we learn from a sketch?

• We want to learn the parameters 𝜃 of the learning model 
𝜋𝜃 ∈ 𝒫 where  𝑥 ∼ 𝜋𝜃

• Similar to moment matching, we match the sketch with it’s 
expectation

min
𝜃∈Θ

𝑧 − 𝔼𝑥∼𝜋𝜃Φ 𝑥

Sketch (empirical moment) True moment 
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Compressive Learning: How is it possible?

• Sketch reformulation: 𝒜 𝜋𝜃 ≔ 𝔼𝑥∼𝜋𝜃Φ 𝑥

• 𝒜: 𝒫→ℝ𝑚 equivalently a linear operator acting the model

min
𝜋𝜃∈𝔖

𝑧 −𝒜 𝜋𝜃

Constrained model set
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Compressive Learning: How is it possible?

min
𝜋𝜃∈𝔖

𝑧 −𝒜 𝜋𝜃

𝜋𝜃 ∈ 𝔖

Sparsity

Low Rank

Low dimensional Manifold
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What has compressive learning achieved 
so far?

1. Compressive k means

• Model set 𝕾 𝜋𝜃: 𝑘 centres 𝑐1, 𝑐2, … , 𝑐𝑘

• Feature Function    Φ 𝑥 =
𝑒
𝑖𝜔𝑗

𝑇𝑥

𝑤 𝜔𝑗
j=1

m

• Sketch Size    𝑚 ≈ 𝒪(kd)

“Compressive Statistical Learning with Random 

Feature Moments” Gribonval et. al. 2020
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What CL has achieved so far?

• Model set 𝕾 𝜋𝜃: mixture of 𝑘 Gaussians

• Feature Function    Φ 𝑥 = 𝑒𝑖𝜔𝑗
𝑇𝑥

j=1

m

• Sketch Size    𝑚 ≈ 𝒪(kd)

1. Compressive k means

2. Compressive GMM

“Compressive Statistical Learning with Random 

Feature Moments” Gribonval et. al. 2020
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What CL has achieved so far?

• Model set 𝕾 𝜋𝜃: 𝑘 dimensional 

subspace - (rank Σ𝜋𝜃 ≤ 𝑘)

• Feature Function    Φ 𝑥 = 𝑎𝑗, 𝑥𝑥
𝑇
𝑗=1

𝑚

• Sketch Size    𝑚 ≈ 𝒪(kd)

1. Compressive k means

2. Compressive GMM

3. Compressive PCA

“Compressive Statistical Learning with Random 

Feature Moments” Gribonval et. al. 2020
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2. Compressive 
ICA
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Independent Component Analysis

• ICA is a method to identify latent variables that are mutually 
independent to one another.

• Applications: Blind source separation, EEG recordings, financial 
modelling, telecommunications

• Given a dataset 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 ∈ ℝ𝑛×𝑑

• 𝑺 = 𝒔𝟏, 𝒔𝟐, … , 𝒔𝒏 ∈ ℝ𝑛×𝑑

• Mixing matrix 𝑸 ∈ ℝ𝑑×𝑑

𝑿 = 𝑸𝑺
Dataset

Mixing Matrix
Independent 
Components

Goal
Estimate Q from 𝑿
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Independent Component Analysis

ICA assumptions
• Each source signal 𝒔 = (𝑠1, 𝑠2, … , 𝑠𝑑) in time has 

components that are mutually independent:

𝜋 𝒔 =ෑ

𝑖=1

𝑑

𝜋𝑖(𝑠𝑖)

• The individual distributions are assumed non-
Gaussian but left unspecified (Semi-parametric)
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How do we estimate 𝑸?

ො𝒔 = 𝑸𝑇𝒙

Optimise 𝑸

Maximize the 
independence ො𝒔

Measures of independence
• Mutual information
• KL divergence 
• Kurtosis (cumulant based 

methods)
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Cumulant Based ICA (Kurtosis)

• The 4th order cumulant (kurtosis) of a 𝒙 is defined as

𝒳𝜋𝜃 𝑖𝑗𝑘𝑙
= 𝔼𝜋𝜃 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 − 𝔼𝜋𝜃 𝑥𝑖𝑥𝑗 𝔼𝜋𝜃 𝑥𝑘𝑥𝑙 −𝔼𝜋𝜃 𝑥𝑖𝑥𝑘 𝔼𝜋𝜃 𝑥𝑗𝑥𝑙 −𝔼𝜋𝜃 𝑥𝑖𝑥𝑙 𝔼𝜋𝜃 𝑥𝑗𝑥𝑘

• In our multivariate setting, the 4th order cumulant gives rise to a 4th

order tensor 𝒳𝜋𝜃
∈ ℝ𝑑×𝑑×𝑑×𝑑

• Note

1. The diagonal entries 𝒳𝜋𝜃 𝑖𝑖𝑖𝑖
auto-cumulants

2. The off-diagonal entries 𝒳𝜋𝜃 𝑖𝑗𝑘𝑙
are the cross-cumulants

ො𝒔 = 𝑸𝑇𝒙
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Cumulant Based ICA (Kurtosis)

• The 4th order cumulant (kurtosis) of a 𝒙 is defined as

𝒳𝜋𝜃 𝑖𝑗𝑘𝑙
= 𝔼𝜋𝜃 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 − 𝔼𝜋𝜃 𝑥𝑖𝑥𝑗 𝔼𝜋𝜃 𝑥𝑘𝑥𝑙 −𝔼𝜋𝜃 𝑥𝑖𝑥𝑘 𝔼𝜋𝜃 𝑥𝑗𝑥𝑙 −𝔼𝜋𝜃 𝑥𝑖𝑥𝑙 𝔼𝜋𝜃 𝑥𝑗𝑥𝑘

• In our multivariate setting, the 4th order cumulant gives rise to a 4th

order tensor 𝒳𝜋𝜃
∈ ℝ𝑑×𝑑×𝑑×𝑑

• Note

1. The diagonal entries 𝒳𝜋𝜃 𝑖𝑖𝑖𝑖
auto-cumulants

2. The off-diagonal entries 𝒳𝜋𝜃 𝑖𝑗𝑘𝑙
are the cross-cumulants

ො𝒔 = 𝑸𝑇𝒙

Zero when 
independent 
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Cumulant Based ICA (Kurtosis)
ො𝒔 = 𝑸𝑇𝒙

GOAL

Optimize 𝑸 such that

መ𝒮 = 𝒳𝜋𝜃
×1 𝑸

𝑇 ×2 𝑸
𝑇 ×3 𝑸

𝑇 ×4 𝑸
𝑇

is diagonal
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Compressive ICA

• The geometry of the cumulant tenors gives 
rise to a natural model set:

𝔖 = {𝜋𝜃 ∣ 𝒳𝜋𝜃
= 𝒮 ×1 𝑸 ×2 𝑸 ×3 𝑸 ×4 𝑸}
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Compressive ICA

• The geometry of the cumulant tenors gives 
rise to a natural model set:

𝔖 = {𝜋𝜃 ∣ 𝒳𝜋𝜃
= 𝒮 ×1 𝑸 ×2 𝑸 ×3 𝑸 ×4 𝑸}

Diagonal Tensor with 
𝑑 degrees of freedom
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Compressive ICA

• The geometry of the cumulant tenors gives 
rise to a natural model set:

𝔖 = {𝜋𝜃 ∣ 𝒳𝜋𝜃
= 𝒮 ×1 𝑸 ×2 𝑸 ×3 𝑸 ×4 𝑸}

Diagonal Tensor with 
𝑑 degrees of freedom

Orthogonal matrix 

with 
𝑑(𝑑−1)

2
degrees of 

freedom
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Compressive ICA

• The geometry of the cumulant tenors gives 
rise to a natural model set:

𝔖 = {𝜋𝜃 ∣ 𝒳𝜋𝜃
= 𝒮 ×1 𝑸 ×2 𝑸 ×3 𝑸 ×4 𝑸}

Diagonal Tensor with 
𝑑 degrees of freedomTotal of  

𝑑(𝑑+1)

2

degrees of freedom

Orthogonal matrix 

with 
𝑑(𝑑−1)

2
degrees of 

freedom
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Compressive ICA

• The geometry of the cumulant tenors gives 
rises to a natural model set:

𝔖 = {𝜋𝜃 ∣ 𝒳𝜋𝜃
= 𝒮 ×1 𝑸 ×2 𝑸 ×3 𝑸 ×4 𝑸}

Total of d 𝑑 + 1
degrees of freedom

• 𝔖 is a low dimension model set 
residing in ℝ𝑑×𝑑×𝑑×𝑑
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Compressive ICA

• The geometry of the cumulant tenors gives 
rises to a natural model set:

𝔖 = {𝜋𝜃 ∣ 𝒳𝜋𝜃
= 𝒮 ×1 𝑸 ×2 𝑸 ×3 𝑸 ×4 𝑸}

Total of d 𝑑 + 1
degrees of freedom

• 𝔖 is a low dimension model set 
residing in ℝ𝑑×𝑑×𝑑×𝑑

• Can we exploit the structure/sparsity 
of 𝒳𝜋𝜃

to from a sketch?
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Compressive ICA: Forming the Sketch

• Feature function: Φ 𝒙 = 𝒂𝒋, 𝒙 ⊗ 𝒙⊗ 𝒙⊗ 𝒙
𝑗=1

𝑚

• Equivalent Sketching Operator: 𝒜 𝒳𝜋𝜃
= 𝑨vec(𝒳𝜋𝜃

)

where 𝑨 ∈ ℝ𝑚×𝑑4 is a random (sub) Gaussian matrix

c.f. compressive 
sensing
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Compressive ICA: Forming the Sketch

• Feature function: Φ 𝒙 = 𝒂𝒋, 𝒙 ⊗ 𝒙⊗ 𝒙⊗ 𝒙
𝑗=1

𝑚

• Equivalent Sketching Operator: 𝒜 𝒳𝜋𝜃
= 𝑨vec(𝒳𝜋𝜃

)

where 𝑨 ∈ ℝ𝑚×𝑑4 is a random (sub) Gaussian matrix

Recall: 𝒛 =
1

𝑛
σ𝑖=1
𝑛 Φ(𝒙𝑖)
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Compressive ICA: Forming the Sketch

• Feature function: Φ 𝒙 = 𝒂𝒋, 𝒙 ⊗ 𝒙⊗ 𝒙⊗ 𝒙
𝑗=1

𝑚

• Equivalent Sketching Operator: 𝒜 𝒳𝜋𝜃
= 𝑨vec(𝒳𝜋𝜃

)

where 𝑨 ∈ ℝ𝑚×𝑑4 is a random (sub) Gaussian matrix

Recall: 𝒛 =
1

𝑛
σ𝑖=1
𝑛 Φ(𝒙𝑖)

Inverse Problem

min
𝒳𝜋𝜃

∈𝔖
𝒛 −𝒜 𝒳𝜋𝜃
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Compressive ICA Restricted Isometry Property

Let 𝐴𝑖𝑗 ∼ 𝑁(0, 𝑚−1), then for any 𝜉, 𝛿 ∈

0,1 and 𝒳𝜋𝜃
∈ 𝔖, we have 

1 − 𝛿 𝒳𝜋𝜃1
−𝒳𝜋𝜃2 𝐹

2
≤ 𝒜 𝒳𝜋𝜃1

−𝒳𝜋𝜃2 2

2
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Compressive ICA Restricted Isometry Property

Let 𝐴𝑖𝑗 ∼ 𝑁(0, 𝑚−1), then for any 𝜉, 𝛿 ∈

0,1 and 𝒳𝜋𝜃
∈ 𝔖, we have 

1 − 𝛿 𝒳𝜋𝜃1
−𝒳𝜋𝜃2 𝐹

2
≤ 𝒜 𝒳𝜋𝜃1

−𝒳𝜋𝜃2 2

2

with prob. 1 − 𝜉 provided that the sketch size

𝑚 ≥
𝐶

𝛿2
max 4𝑑(𝑑 + 1) log 6 , log(

6

𝜉
)
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Compressive ICA Restricted Isometry Property

𝑚 ≥
𝐶

𝛿2
max 4𝑑(𝑑 + 1) log 6 , log(

6

𝜉
)

𝑚 ≈ 𝒪 𝑑 𝑑 + 1
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent 
scheme to solve the OP
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent 
scheme to solve the OP

• After each gradient step, we 
project onto the model set 𝔖
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent  
scheme to solve the OP

• After each gradient step, we 
project onto the model set 𝔖

• Akin to Compressive Sensing 
(hard thresholding onto the 
sparse set)
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent  
scheme to solve the OP

• After each gradient step, we 
project onto the model set 𝔖

• Akin to Compressive Sensing 
(hard thresholding onto the 
sparse set)

𝔖

ℝ𝑑×𝑑×𝑑×𝑑
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent  
scheme to solve the OP

• After each gradient step, we 
project onto the model set 𝔖

• Akin to Compressive Sensing 
(hard thresholding onto the 
sparse set)

𝔖

ℝ𝑑×𝑑×𝑑×𝑑

𝒳 1

𝒳𝜋𝜃

(0)

.

.

Gradient Step
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent  
scheme to solve the OP

• After each gradient step, we 
project onto the model set 𝔖

• Akin to Compressive Sensing 
(hard thresholding onto the 
sparse set)

𝔖

ℝ𝑑×𝑑×𝑑×𝑑

𝒳 1

𝒳𝜋𝜃

(0)
.
𝒳𝜋𝜃

(1)

.

.

Projection Step 
𝑃𝔖(𝒳)
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Constrained Optimization
min
𝒳𝜋𝜃∈𝔖

𝒛 −𝒜 𝒳𝜋𝜃

• We propose an iterative 
projection gradient descent  
scheme to solve the OP

• After each gradient step, we 
project onto the model set 𝔖

• Akin to Compressive Sensing 
(hard thresholding onto the 
sparse set)

𝔖

ℝ𝑑×𝑑×𝑑×𝑑

𝒳 1

𝒳𝜋𝜃

(0)

𝒳 2

𝒳𝜋𝜃

(2).
𝒳𝜋𝜃

(1)

.

.

.

.
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3. Results
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Compressive ICA RIP in Practice

Experiment 1
• We mix the cumulant tensor of 𝑑 = 7 sources signals by a 

known mixing matrix 𝑸 to construct 𝒳𝜋𝜃 .

• For varying sketch sizes 𝑚, we compute the sketch and 

obtain the estimate 𝑸 using the IPG algorithm. 

• Consider the estimation successful if D 𝑸, 𝑸 ≤ 10−7, 

where 𝐷 is the Amari error/distance.

Compressive ICA RIP: 

𝑚 ≈ 𝒪 𝑑 𝑑 + 1



49/71

Compressive ICA RIP: 

𝑚 ≈ 𝒪 𝑑 𝑑 + 1

Compressive ICA RIP in Practice
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Compressive ICA RIP: 

𝑚 ≈ 𝒪 𝑑 𝑑 + 1

Phase 
transition

Compressive ICA RIP in Practice
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Compressive ICA RIP in Practice

Compressive ICA RIP: 

𝑚 ≈ 𝒪 𝑑 𝑑 + 1

𝑑
Su

cc
es

s
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Compressive ICA RIP in Practice

Compressive ICA RIP: 

𝑚 ≈ 𝒪 𝑑 𝑑 + 1

𝑑

Phase transition 
occurs around 
𝑚 = 2𝑑(𝑑 + 1)

Su
cc

es
s
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Compressive ICA RIP in Practice

Compressive ICA RIP: 

𝑚 ≈ 𝒪 𝑑 𝑑 + 1

𝑑

Phase transition 
occurs around 
𝑚 = 2𝑑(𝑑 + 1)

In practice the 
order is ≈ 2.5

Su
cc

es
s
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How efficient are sketches?

Experiment 2
• 𝑑 = 7 source signals 

mixed by 𝑸

• Measure the average 
Amari error D(𝑸, 𝑸)
over 1000 trials

• Plotted as function of 
the number of data 
points 𝑛
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How efficient are sketches?

Sketch size is 
not sufficient so 
fails. 
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How efficient are sketches?

The mean Amari 
error of the sketch 
converges toward 
the full data error. 
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Toy Example
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Toy Example
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Toy Example
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Method Amari Error Space Complexity

Fast ICA 
(recourse to 

data)

0.4087

Cumulant based 
ICA (no 

Compression)

0.4129

Compressive 
ICA

0.4156

5× 5 × 5 × 5
cumulant 
Tensor (70 DoF)

5 × 16000 Data 
matrix

𝑚 = 38
size sketch

𝑚

𝒛
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Limitations

• In general it is difficult to find closed form 
projections onto model sets

• Here we use a proxy projection, where we first 
partially diagonalise the cumulant tensor using 
existing techniques and then threshold the cross 
cumulants to zero.

• As a result, the computational complexity is 
equivalent to other cumulant based method
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Summary

• We have shown that a low dimensional model set 
exists in the space of cumulant tensors for the ICA 
problem

• As a result, we can form sketches that are of the 
order of the model set to estimate the parameters 
of the ICA model

• The memory complexity is reduced from 𝒪 𝑑4 to 
𝒪(𝑑 𝑑 + 1 )
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Outlook

• Seek a cheaper projection operator or proxy that 
exhibits a computational complexity that scales with 
𝑚

• Quantify theoretically the controlled loss of 
information/efficiency of taking a sketch of size 𝑚

• Can we leverage other sufficient statistics to 
produce sketches from when the distribution, like 
ICA, is left unspecified?
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Thank you for your attention!

Any questions?


