Imaging techniques for LOW-DOSE and COLOR tomography: new challenges for PET and Cone-Beam CT with hybrid pixels

<u>Yannick Boursier</u> (ex-APIDIS member) imXgam group Centre de Physique des Particules de Marseille

in collaboration with <u>S. Anthoine, C. Mélot</u>, Signal Processing Group, LATP, Marseille, France <u>J.-F. Aujol</u>, Analysis Group, IMB, Bordeaux, France

Outline

- I Recalls in tomography
- II What's new at CPPM ?
- III CBCT and PET problem formulations and solvers
- IV Results
- V Future challenges
- Conclusion

Signal Processing Seminars, ICTEAM/ELEN, ISP Group May, 18th, 2011

IN2P3

• Basis of tomography : data in 1D + angle, object in 2D.

Image to reconstruct

• Basis of tomography : data in 1D + angle, object in 2D.

Image to reconstruct

• Basis of tomography : data in 1D + angle, object in 2D.

Image to reconstruct

• Basis of tomography : data in 1D + angle, object in 2D.

Image to reconstruct

• Basis of tomography : data in 1D + angle, object in 2D.

Image to reconstruct

• Basis of tomography : data in 1D + angle, object in 2D.

Image to reconstruct

• Basis of tomography : data in 1D + angle, object in 2D.

From Kak-Slaney :

Principles of Computerized Tomographic Imaging

Signal Processing Seminars, ICTEAM/ELEN, ISP Group May, 18th, 2011

N2P3

• Basis of tomography : data in 2D + angle, object in 3D.

Sinogram

• Basis of tomography : data in 2D + angle, object in 3D.

Sinogram

I - Recalls in emission tomography

• PET = Positron Emission Tomography

- Annihilation of positron/electron
- 511 keV gamma rays emission

Signal Processing Seminars, ICTEAM/ELEN, ISP Group May, 18th, 2011

S

H

 \mathcal{X}

I - Recalls in tomography

Normal distribution of FDG

Abnormal distribution of FDG

II - What's new at CPPM ? ... Biomedical imaging !

CPPM : a lab from IN2P3 for particle physics.

Physics experiences : Antares, Atlas, LHCb, DO, and imXgam !

Some imXgam projects :

XPIX :

Hybrid pixels for X-ray : XPAD cameras.

PIXSCAN :

Micro CT-Scanner based on hybrid pixels.

ClearPET/XPAD :

Simultaneous PET/CT imaging based on hybrid pixels.

Hybrid pixel detectors for High Energy Physics

Inner detector

10⁸ hybrid pixels 400 x 50 μm²

Hybrid pixels

- very fast data acquisition
- choice of du substrat (Si, CdTE, AsGa)

imXgam

- No Dark noise
- Energy selection
- Very large dynamic range

Photon counting versus charge integration

Photon counting mode

XPAD3 camera : more than 500,000 pixels of 130 μ m

New hybrid pixel camera for X-rays XPAD3/Si

- Photon couting
- Silicon sensor : 500 μ m thickness.
- 125 x 75 mm² : detector size
- $130 \times 130 \ \mu m^2$: pixel size
- 560 x 960 pixels
 - Fast readout and data transfer : up to 300 frames/s (optical fibre and PCIExpress)

Chips 1x1cm assembled in barrettes, barrettes assembled in tiles.

Whole-body mouse with spatial resolution of 60 μ m

Démonstrateur micro-CT PIXSCAN II

OXFORD Intruments X-ray tube

Complete system : 3 blocks

Target Voltage 10 to 90kv, Target Current up to 2 mA

W target, 13 to 40 μm focal spot size, 80 W, 33 degrees Cone Angle

micro-CT PIXSCAN II demonstrator

First light XPAD3/PIXSCAN II

Reconstruction performed on a GPU AMD/ATI, Algorithm FDK. But need of 720 projections and >1mGy/s at 160 mm

ClearPET + XPAD = ClearPET/XPAD

ClearPET (EPFL)

- Open geometry
- Phoswich LSO/LuYAP detectors
- 2 x 64 cristals of
 2 x 2 x 8 mm³
- PMT multi-anodes at 64 channels

XPAD (CPPM)

- XPAD3 camera
- 500 μ m Si pixelized
- Pixels of 130 x 130 μm^2
- 0,5 Mpixels
- Energy selection
 5-35 keV
- W X-ray source

CleartPET/XPAD

- Hybrid tomography
- Simultaneous TEP/TDM
- TEP : 55 mm axial 111 mm transverse
- TDM : 59 mm axial 38 mm transverse

PET/CT scan of a mouse : SIMULTANEOUS ACQUISITION

- Volume rendering
- Segmentation of lungs and kidneys
- 40 kV, 800 μA,
 filter Nb/Mo
- 360 projections
- 1 s/projection
- 10 000 photons/pixel

Challenges

- High quality of reconstruction while :
 - reducing the X-ray dose (CT)
 - reducing the radiotracer dose (PET)
 - reducing the exam duration (PET)
- Possible solutions :
 - Reduce the number of projections (CT)
 - Reduce the intensity of acquired signals (PET and CT)

Need to deal with pure Poisson Noise ...

III - Frameworks

Under the assumption of a monochromatic beam, a hybrid pixel measures

$$y_j = z_j \exp\left(-\left[A\mu\right]_j\right)$$

A crystal of the ClearPET measures

$$y_j = \left[Bx\right]_j$$

where the system matrices A and B incorporates geometry and corrections.

Need to deal with pure Poisson Noise ...

$$y \sim \mathcal{P}(x) \qquad \longleftrightarrow \qquad P(Y=y) = e^{-x} \frac{x^y}{y!}$$

Why regularization ?

Let's define $y \in \mathbb{R}^n$ the measures,

and $x \in \mathbb{R}^m, \mu \in \mathbb{R}^m$ the unknown to recover

and $A \in \mathcal{M}(\mathbb{R}^n, \mathbb{R}^m), B \in \mathcal{M}(\mathbb{R}^n, \mathbb{R}^m)$ the system matrices.

with $n \ll m$ in general ...

- Tomography is an (inverse) ill-posed problem !!!!
- System matrices are ill-conditioned operators..
- ... and degenerated operators, i.e. kernels non reduced to {0}.

III - CBCT Framework

Incorporating Poisson Noise

$$y_j \sim \mathcal{P}\left(z_j \exp\left(-\left[A\mu\right]_j\right)\right)$$

Log-likelihood

$$L(\mu) = -\sum_{j} \{y_j \left[A\mu\right]_j + z_j \exp\left(-\left[A\mu\right]_j\right)\}$$

General objective function

$$\hat{\mu} = \arg\min_{x} -L(\mu) + \lambda J(\mu)$$

$$\hat{\mu} = \arg\min_{\mu} \sum_{j} \{ y_j \left[A\mu \right]_j + z_j \exp\left(- \left[A\mu \right]_j \right) \} + \lambda J(\mu)$$

III - PET Framework

Incorporating Poisson Noise

$$y_j \sim \mathcal{P}\left(\left[Bx\right]_j\right)$$

Log-likelihood

$$L(x) = \sum_{j} \{y_j \log([Bx]_j + \epsilon) - [Bx]_j\}$$

General objective function

$$\hat{x} = \arg\min_{x} -L(x) + \lambda J(x)$$

$$\hat{x} = \arg\min_{x} \sum_{j} \{ [Bx]_{j} - y_{j} \log\left([Bx]_{j} + \epsilon \right) \} + \lambda J(x)$$

imXgam

10 000 photons in white, 360 projections MLEM algorithm : no regularization

10 000 photons in white, 360 projections MLEM algorithm : no regularization

10 000 photons in white, 360 projections MLEM algorithm : no regularization

10 000 photons in white, 360 projections MLEM algorithm : no regularization

III - Tested Models of sparsity

• The discrete total variation of u is then defined by:

$$J_{TV}(u) = \sum_{1 \le i,j \le N} |(\nabla u)_{i,j}|$$

• A regularized version of the total variation:

$$J_{TV}^{reg}(u) = \langle \sqrt{\alpha^2 + |\nabla u|^2}, 1 \rangle = \sum_{1 \le i, j \le N} \sqrt{\alpha^2 + |(\nabla u)_{i,j}|^2}$$

• A sparsity-inducing norm on a frame expansion (wavelets, curvelets, ...):

$$J_{l_1,\varphi}(u) = \sum_{\lambda \in \Lambda} |\langle u, \varphi_\lambda \rangle| = ||R_{\varphi}(u)||_{l_1}$$

III - Solvers

Generally speaking, how to solve : $\arg\min_{x\in X} F(Kx) + G(x)$ F and G proper, convex, lower semi-continuous functions, with K continuous linear operators. x_0 Alternate projection onto convex sets (APOCS) Signal Processing Seminars, ICTEAM/ELEN, ISP Group imXgam May, 18th, 2011

III - Solvers

The recent Chambolle-Pock primal-dual solver is a generalization of APOCS to non-differentiable functions using the proximity operators.

Let define the Legendre-Fenchel conjugate function of F : $F^*(y)$

$$f(y) = \max_{x \in X} (\langle x, y \rangle) - F(x))$$

Then the primal-dual equivalent problem is formulated as :

$$\min_{x \in X} \max_{y \in Y} (\langle Kx, y \rangle + G(x) - F^*(y))$$

General iterations of the solver :

- Initialization: Choose $\tau, \sigma > 0, (x_0, y_0) \in X \times Y)$, and set $\bar{x}_0 = x_0$.
 - Iterations $(n \ge 0)$: Update x_n, y_n, \bar{x}_n as follows:

$$\begin{cases} y_{n+1} = (I + \sigma \partial F^*)^{-1} (y_n + \sigma K \bar{x}_n) \\ x_{n+1} = (I + \tau \partial G)^{-1} (x_n - \tau K^* y_{n+1}) \\ \bar{x}_{n+1} = 2x_{n+1} - x_n \end{cases}$$

IV - Results on synthetic data

Ground Truth

CT

CBCT , $Z = 10\ 000\ \text{photons}$

nr = 19.54 ssim = 0.930

FB-Wav

Snr = 18.30 ssim = 0.939

FB-TV

Snr = 19.61 ssim = 0.944

FBP

nr = 13.43 ssim = 0.399

Snr = 15.64 ssim = 0.730

MLEM-Huber

Snr = 19.67 ssim = 0.870

Figure 2: CT reconstruction, photon count z=10000

CBCT , Z = 1000 photons

Inr = 9.07 ssim = 0.199

MLEM

Snr = 11.84 ssim = 0.458

MLEM-Huber

Snr = 14.36 ssim = 0.676

Figure 3: CT reconstruction, photon count z=1000 Signal Processing Seminars, ICTEAM/ELEN, ISP Group May, 18th, 2011

CBCT, Z = 100 photons

TVreg

nr = 11.42 ssim = 0.659

FB-Wav

Snr = 10.45 ssim = 0.714

FB-TV

Snr = 11.40 ssim = 0.737

3nr = 0.41 ssim = 0.078

Snr = 7.97 ssim = 0.207

Snr = 10.86 ssim = 0.507

Figure 4: CT reconstruction, photon count z=100 Signal Processing Seminars, ICTEAM/ELEN, ISP Group May, 18th, 2011

Algorithm	snr	ssim	λ	nb. iterations	time (s)	nb. realizations
TVreg	19.57	0.900	300	300	44	100
TVreg	19.51	0.924	450	300	44	100
FB-Wav	18.63	0.938	75	300	110	100
FB-TV	19.61	0.916	300	300	85	100
FB-TV	19.56	0.941	450	300	86	100
FBP	13.40	0.395	-	12	0.12	25
MLEM	15.60	0.711	-	120	46	25
MLEM-Huber	19.61	0.856	2e5/9e-4	1000		25

Table 1: CT reconstruction, photon count z=10000

Algorithm	snr	ssim	λ	nb. iterations	time (s)	nb. realizations
TVreg	15.06	0.808	200	300	36	100
TVreg	14.93	0.811	300	300	36	100
FB-Wav	14.06	0.826	25	300	110	100
FB-TV	15.10	0.845	200	300	85	100
FB-TV	14.95	0.853	300	300	86	100
FBP	9.08	0.201	-	-	0.09	25
MLEM	11.86	0.462	-	43	14	25
MLEM-Huber	14.52	0.680	7e5/9e-4	752		25

Table 2: CT reconstruction, photon count z=1000

	Algorithm	snr	ssim	λ	nb. iterations	time (s)	nb. realizations
	TVreg	11.34	0.625	80	300	32	100
	TVreg	11.28	0.624	100	300	32	100
	FB-Wav	10.62	0.695	10	300	110	100
	FB-TV	11.35	0.690	80	300	78	100
	FB-TV	11.32	0.690	100	300	78	100
×	FBP	0.44	0.076	17-18	1.0	0.07	25
2	MLEM	7.90	0.200	-	17	5.67	25
	MLEM-Huber	10.78	0.489	3.5e4/9e-4	605		25

im

PET , count = 500 000

nr = 15.33, ssim = 0.903

CP-Wav

nr = 14.91, ssim = 0.885

FBP

nr = 11.68, ssim = 0.432

FB-Wav

- Snr = 14.93, ssim = 0.888
 - CP-TV-BT

Snr = 15.33, ssim = 0.906

MLEM

Snr = 13.42, ssim = 0.821

Snr = 15.38, ssim = 0.907

CP-TV

Snr = 14.82, ssim = 0.859

MLEM-Huber

Snr = 15.18, ssim = 0.868

Figure 5: TEP reconstruction, detector efficiency fcount=500000

PET , count = 200 000

TVreg

- nr = 13.73, ssim = 0.867
 - CP-Wav

nr = 13.58, ssim = 0.867

inr = 9.07, ssim = 0.321

FB-Wav

- Snr = 13.20, ssim = 0.865
 - CP-TV-BT

Snr = 14.12, ssim = 0.882

MLEM

Snr = 12.08, ssim = 0.776

Snr = 13.74, ssim = 0.876

CP-TV

Snr = 13.98, ssim = 0.868

MLEM-Huber

Snr = 13.95, ssim = 0.852

Figure 6: TEP reconstruction, detector efficiency fcount=200000

PET , count = 100 000

nr = 12.26, ssim = 0.842

CP-Wav

nr = 11.50, ssim = 0.831

FBP

inr = 6.72, ssim = 0.258

- Snr = 11.47, ssim = 0.833
 - CP-TV-BT

Snr = 13.30, ssim = 0.864

MLEM

Snr = 11.20, ssim = 0.732

FB-TV

Snr = 12.29, ssim = 0.849

CP-TV

Snr = 12.96, ssim = 0.823

MLEM-Huber

Snr = 13.15, ssim = 0.837

Figure 7: TEP reconstruction, detector efficiency fcount=100000

Quantitative results, PET, count = 500 000

Algorithm	snr	ssim	λ	nb. iterations	time (s)	nb. realizations
TVreg	15.33	0.902	0.70	200	10	15
TVreg	15.08	0.899	1.05	200	10	15
FB-Wav	14.77	0.889	0.10	150	89	25
FB-TV	15.37	0.905	0.70	100	62	15
FB-TV	15.19	0.909	1.05	100	62	15
CP-Wav	14.68	0.885	0.10	80	63	25
CP-TV-BT	15.32	0.905	0.70	80	63	15
CP-TV-BT	14.89	0.906	1.05	80	62	15
CP-TV	14.84	0.860	0.70	400	266	15
CP-TV	14.55	0.858	1.05	400	265	15
SPIRAL	15.17	0.905	0.70	100	76	10
SPIRAL	14.82	0.904	1.05	100	80	10
FBP	11.59	0.429	-	-	0.04	25
MLEM	13.38	0.819	-	17	2	25
MLEM-Huber	15.22	0.866	0.9/0.25	267	46	25

Table 4: TEP reconstruction, detector efficiency fcount=500000

Quantitative results, PET, count = 200 000

Algorithm	snr	ssim	λ	nb. iterations	time (s)	nb. realizations
TVreg	13.68	0.866	0.50	200	11	100
TVreg	13.40	0.856	0.75	200	11	100
FBwav	13.11	0.867	0.0875	150	89	50
FB-TV	13.71	0.875	0.50	100	65	100
FB-TV	13.56	0.882	0.75	100	65	100
CPwav	13.46	0.870	0.0875	100	79	50
CP-TV-BT	14.17	0.882	0.50	100	82	100
CP-TV-BT	14.00	0.888	0.75	100	83	100
CP-TV	14.01	0.867	0.50	150	107	100
CP-TV	13.77	0.867	0.75	150	107	100
SPIRAL	13.40	0.872	0.50	100	65	100
SPIRAL	13.13	0.874	0.75	100	67	100
FBP	9.03	0.322	-	-	0.07	25
MLEM	12.08	0.774	72	12	2	25
MLEM-Huber	13.97	0.853	0.9./0.25	274	53	25

Table 5: TEP reconstruction, detector efficiency fcount=200000

Quantitative results, PET, count = 100 000

Algorithm	snr	ssim	λ	nb. iterations	time (s)	nb. realizations
TVreg	12.12	0.841	0.40	200	13	10
TVreg	11.89	0.835	0.60	200	?	10
FBwav	11.55	0.834	0.0625	150	89	50
FB-TV	12.14	0.847	0.40	100	68	10
FB-TV	11.98	0.853	0.60	100	71	10
CPwav	11.65	0.835	0.0625	50	40	50
CP-TV-BT	13.13	0.862	0.40	50	46	10
CP-TV-BT	12.90	0.867	0.60	50	45	10
CP-TV	12.86	0.823	0.40	100	78	10
CP-TV	12.66	0.825	0.60	100	77	10
SPIRAL	11.77	0.841	0.40	100	86	10
SPIRAL	11.58	0.843	0.60	100	84	10
FBP	6.66	0.254	-	-	0.08	25
MLEM	11.06	0.731	-	10	2	25
MLEM-Huber	12.92	0.837	0.8/0.25	278	58	25

Table 6: TEP reconstruction, detector efficiency fcount=100000

V - Future challenges

1 - Reducing the dose may mean :

- Reducing the statistics
- Reducing the number of projections

More adapted sparsity models to biomedical images?

- 2 Go towards color imaging !
 - Energy selection ! ..
 - Acquire directly color information?

Go towards X-color imaging : concept

Contrast magnification

Signal Processing Seminars, ICTEAM/ELEN, ISP Group May, 18th, 2011

N2P3

Go towards X-color imaging : concept

courtesy: A. Butler, MARS Biomedical Imaging Ltd.

3 pharmaceutical, perspex phantom

University Albert-Ludwigs in Freiburg and university of Canterbury

Go towards X-color imaging : concept

Quantitative system developed at Erlangen-Nürnberg

courtesy: A. Butler, MARS Biomedical Imaging Ltd.

Towards CBCT Color Imaging

Measurements of our W-source spectra with different filters

No more (obvious) linearity ... sad news !

Conclusion

New XPAD3 hybrid pixels camera for X-ray photon counting developed at CPPM :

CT-Scanner based on hybrid pixels.

Simultaneous PET/CT scanner for bimodality images.

Simulations as well as real acquisitions have proven the reliability of hybrid pixels for micro-CT scanner and PET/CT !

Adapted algorithms :

For low dose : Poisson noise to take into account

For small number of projections : regularization needed ... sparsity basis ?

For color imaging : adapt the acquisition framework ... CS theory for help ?

Implementation on GPUs strongly speeds-up the reconstruction (between 100 and 300 times faster compared to CPUs). Being implemented for iterative methods...

