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depend on �2K

⇥ is RIP with �2K < 0.4652
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Fast Discrete Curvelet Transforms, Candès, Demanet, Donoho, Ying
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Motivation
What if      is an overcomplete dictionary? 

Some sparsifying transforms do not have any orthobasis

we must work with tight frames

Akvk22  k vk22  Bkvk22
frame

tight frame
k vk22 = ⌧kvk22 (A = B = ⌧)

 T = ⌧

< v, T v >= ⌧ < v, v >
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Motivation
What if      is an overcomplete dictionary? 

Overcomplete representation are flexible and convenient.

Deconvolution

Tomography

Signal denoising

Help reducing artifacts and MSE in

…
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Motivation
What if      is an overcomplete dictionary? 

⇥ = � may not be RIP anymore

Entries of     (atoms) are correlated 

Build a new theory for coherent overcomplete dictionary

Design      according to  � Loss of universality
see the work of P. Randall
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Other examples

Oversampled DFT
frequencies may be over smaller intervals or intervals of varying length

Undecimated Wavelet transform
h1

g1

g2

g3

h3

h2

x

Level 1 coefficients

Level 2 coefficients

Level 3 coefficients

Scaling functions

Ninput size:

Concatenations
e.g., DFT with canonical basis

no decimator
4Noutput size:

translation invariant
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Is incoherence needed?
Simple example :

� = Id

 1 =  2

↵1 = e1

↵2 = e2

let
We cannot 
distinguish      from↵1 ↵2

y1 =  ↵1 =  ↵2 = y2

Do we care?

maybe not!

The objective is not to find    but to find↵ x
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Analysis reconstruction

Special case :     Gaussian with � M = O (K logN)

 is an arbitrary tight frame
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k T
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Then

Holds, even if     is maximally coherent ! 
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We look for a      that has a sparse expansion in x

 



Implications

kx� x

?k2  C0
k T

x� ( T
x)Kk1p

K

+ C1✏

tail of the signal
small if            is “reasonably sparse” and 
     nearly sparse such that

 T 
x =  ↵9↵

 T  T
x

Example : 
Gabor dictionary 
with Gaussian 
windows 
(see numerical results)



Implications

Works for a lot of dictionaries
Ovesampled DFT, Gabor frames, UDWT, 
Curvelet frames,….

Not for concatenations of two orthobases

Neither sparse in DFT analysis nor in Canonical basis
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General case

D-RIP adapted to the dictionary     (with constant     ) 

8x 2 ⌃K

⌃K := the union of subspaces spanned by all subsets of K columns of     , i.e., 
the image under     of all K-sparse vectors

 
 

Any matrix satisfying the RIP will satisfy the D-RIP after 
randomizing the column signs

see Krahmer and Ward
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Main result

kx� x

?k2  C0
k T

x� ( T
x)Kk1p

K

+ C1✏

Then the solution of the analysis reconstruction 
satisfies

If     satisfies the D-RIP adapted to the dictionary    
with constant                     (or                 ) 

 �
�7K  0.6�2K < 0.08

depend on �2K



Numerical results

Pulse envelopes full signal 
spectrum

Simulated radar detection

200 ns

~20 ns

Power spectral density
time

frequency

amplitude

power (dB)
0 1.64 µs

0 2.5 GHz

freq. carriers 
distributed 
randomly 

-280

-100

N=8192 samples



Numerical results

Gaussian� M = 400

N = 8192

D ⇡ 60N

M ⇥N

 N ⇥D Gabor dictionary
Gaussian windows

is not exactly sparse in      because  
- the pulse envelopes are not Gaussian; 
- frequencies and arrival times sample from a 

continuous grid.

x  
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frequency

time

original

original
error

reconstruction

reconstruction
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“solves several sequential weighted     -
minimization problems, each using weights 
computed from the solution of the previous 
problem”

Reweighted     analysis`1

`1

Known to “outperform standard      -
minimization in many situations”

`1

Enhanced method based on the original
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Comparison

 T
x  T

x

?

 T ↵?

 T
x

?

original

synthesis↵?

analysis reweighted

analysis

synthesis

Coefficients in Gabor domain

zoom



Comparison

time (s)

error in analysis recovery

error in synthesis recovery
error in reweighed analysis recovery
error in analysis recovery
true signal



Discussions

How to deal with concatenations of orthobases?

Split-analysis
x = x1 + x2

(x?

1, x
?

2) = arg min
x1,x2

k T

1 x1k1 + k T

2 x2k1 s.t. k�(x1 + x2)� yk  ✏

Synthesis may also work in this case
Very different geometrical properties. 
Performs on different classes of signal than analysis.
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As soon as                  respects the standard RIP, the analysis 
recovery tends to perform in general worse than the 
synthesis.

⇥ = � 

k�0(x)� (�0(x))Kk1  k T
x� ( T

x)Kk1
synthesis 
error term

analysis 
error term
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Cosparsity : number of zeros in the analysis domain  T
x

x  T(N � 1)Let    be a             -cosparse vector for       ,  
i.e. the simplest cosparsity level.

 
 T

x

D = 1.15N
(0.15N + 1)

Let     an overcomplete dictionary with                     so that 
          is                       - sparse

�7K  0.6
�7(0.15N+1) = �1.05N+7 � 1 ⌃N = RN(because                   )

The theorem for the analysis error bound requires  
but  

The requirement of the theorem cannot be met !



Take home messages
- Redundant dictionaries are useful in compressed sensing too. 

- Random sensing matrices still work (D-RIP). 

- Analysis formulation may help for a lot of problems. 

- Synthesis formulation is more suited for a lot of other 
problems. 

- The theoretical bound may be further optimized. 

- The D-RIP has its limits and the cosparse analysis can also 
help for theoretical works.
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Thank you !


