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Project Presentation

— strong correlation between structure of the nucleolus of a cell
and potential diseases of this cell

— biologist have generated a database by annihilating some
specific genes of the cells (silencers) and they have visually
observed different conformations of the nucleolus

28000 Q

Well A12 Well A12 Well F12 Well F12 Well EO2

1 well of cells = 1 silencer
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Project Presentation

Objective :

m clustering the cells based on the conformation of their
nucleolus

B maximize the number of cluster

Hypothesis :

m the cell of the same well should belong to the same cluster
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Project Presentation

After an image analysis processing, each cell is represented by a
15-dimensional characteristics' vector x; € R1®

Example : elliptic regularity, number of connected component,
luminous intensity
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Project Presentation

Presence of the noice :
m some cells of a well could not have reacted to the silencer

m 2D representation of a 3D cell
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Graph clustering

data points : x,...,x, € RP

similarity matrix : W = (wjj)i j=1..n = w(x;, Xj)

similarity graph G = (V, E)

V : vertices (data points) E : edges with weight w;;

Problem of clustering <+ Partition the graph so that edges within a
group have large weights and edges across groups have small
weights.
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Construction of the connectivity matrix

For each vertices, selection of the m-nearest neighbors —
C(i,j) = 1if j is one of the m-nearest neighbors of / and 0
otherwise.
C is not symmetric :
® Cporm = max(C,C") — C(i,j) = 1if i is one of the m-nearest
neighbors of j OR if j is one of the m-nearest neighbors of i :
each vertice has at least m neighbors (normal graph)
B Cpye = min(C,C") — C(i,j) = 1if i is one of the m-nearest
neighbors of j AND if j is one of the m-nearest neighbors of  :
each point has at most m neighbors (mutual graph)

— Connectivity matrix Cporm of Cmyur : Sparse matrix
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Construction of the similarity matrix

=112
If i and j are connected wjj = e 20> — o controls the size of
the neighborhood
How to choose o :

m human-specified parameter

m local scaling ([1] Zelnik-Manor, 2005) : one value of o for each
point. Ex : o; = max(||x; — xj||) for j in the neighborhood of i
J
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Definitions

Degree of a vertice i : dj =37, w;

Degree diagonal-matrix with coefficients d; : D
Laplacian matrix :
L=D-W
Normalized Laplacian matrix :
m L, =D1L
w Lym=D2LD1/2
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Numbers of connected components and spectrum of L,,

The multiplicity k of the eigenvalue 0 of L,, equals the number of
connected components Ay, ..., A in the graph. The eigenspace of

the eigenvalue 0 is spanned by the indicator vector 14,, ..., 14,
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Partitioning a graph

For two subsets A, B of V' : W(A,B) =3 ;.4 ci
Two ways for mesuring the "size" of a subset A :

wij

m |A| : number of vertices in A
m vol(A) =D icadi

Two criteria to partitioning a graph :

1 I
cut(Ar, ... Ae) = 5 > W(ALA)
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Partitioning a graph

m Minimize cut leads to solution which separate one individual
vertex from the rest of the graph.
m By dividing the cut by vol/(A;), we explicity request that the
sets A1, ...Ax are reasonably large.
Problem : minimizing Ncut is NP-Hard — Spectral clustering is a
way to solve relaxed version of this problem.
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Spectral clustering

Algorithm  Normalized spectral clustering (Shi and Malik 2000)

L-D-W

Compute the k first eigenvector uy, ..., u;, of L,,, = D7'L by solving Lu = ADu
ui(l) ... (1) T

U=|w@) ... w(i)|=]|v|yecR
u(n) ... ug(n) Un

[Ch, ..., Cy]  kmeans({y:};_, .. k)
Output : Clusters Ay, ... Ay with A; = {z;|y; € C;}
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Why does it work ?
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Why does it work ?
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Information theoritic measures for clustering

Pb : How to evaluate the quality of a clustering ? ([3] Vinh 2010)

Basing the following array, we can compare two clusterings
K= (Ki,...Kp) et C=(G,...,C)

K K; K, Sum
Cl |(71FIK1| ‘ClﬂK,_l |ClﬁI(p| [43]
Cy [ |ConKy| ... |Conky ... |Canky| ay
C. |ICNEKY ... |ICNEK;| ... [C-nNK, a,
Sum by b; b, Do =1 with nj = |Ci N KJ|
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Information theoritic measures for clustering

i=1 j=1
r p n njj
I(C,K) = Z ~log a%j Mutual Information
i=1 j=1 N
I(C,K)

21/37



Information theoritic measures for clustering

I(K, C)

NMI(K, C) = O

Normalized Mutual Information

0< NMI(K,C) <1
if K= C then NMI(K, C) =1
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Spectral Clustering vs Kmeans

Spectral Clustering K-means
1 1
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Figure: Spectral Clustering vs Kmeans
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Influence of o (normal graph - 20 neighbors

oo otz
Py
. KM 5 gi AT
& #o »» ™
07 +* A 07 + 07 w* L
wf & e Tl W] 4 o £ P
oy 4 oy & |
$ N : § H
I 4 I 4 b
A . . N P R
3 Ll a il L Ll
1‘ N ‘2,,, 3 ‘w
02 Fog et 02 Fopp ey X 02 g g atnet
i
i
pREY
o #E
el -
- o o
; s
os| # *ul
;
& § o7
P ¥ = e
* ¥ | =08 *
04 :
LW, H e 3
s
03 Pt 04 wr
o2 gy et o

24/37



Local scaling (normal graph - 20 neighbors
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Influence of the noise

Experimental protocol :

- given two gaussian distributions (1000 points in each) (u1,01)
and (pg,02) where pg and pp are fixed so that ||u1 — p2|| = 1. We
test our algorithm by varying o1 and o5 from 0.1 to 1
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Comparaison Normal Graph - Mutual Graph 2D

Normal graph Mutual graph
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Contour line Normal Graph - Mutual Graph 2D
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Comparaison Normal Graph - Mutual Graph 3D

Normal graph Mutual graph
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Comparaison Normal Graph - Mutual Graph 4D

Normal graph Mutual graph

30/37



Results on biological data

Pb : the number of cluster k is unknown.

— We test our algorithm for different values of k and we keep
which has the largest value of NMI

Database :
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Results on biological data

1

Repanmon des cellules dans le cluster 1
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Reépartition des cellules dans le cluster 2
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Figure: 2 Clusters (normal graph - 100 neighbors)
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Results on biological data
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Results on biological data

Reépartition des cellules dans le cluster 1
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Répartition des cellules dans le cluster 2
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Figure: 4 Clusters
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Conclusion

Advantages of spectral clustering :
m quite simple to implement
m good results on our dataset
Future work :
m use other algorithm than kmeans to separate eigenvector

m clustering on one well of cells to identify the noise
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Thanks for your attention
Any questions?
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