
Spectral clustering techniques for biological data

17 septembre 2014

1 / 37



Plan

1 Project presentation
2 Spectral clustering
3 Results on synthetic data / biological data

2 / 37



Plan

1 Project presentation
2 Spectral clustering
3 Results on synthetic data / biological data

3 / 37



Project Presentation

→ strong correlation between structure of the nucleolus of a cell
and potential diseases of this cell
→ biologist have generated a database by annihilating some
specific genes of the cells (silencers) and they have visually
observed different conformations of the nucleolus

Well A12 Well A12 Well F12 Well F12 Well E02

1 well of cells = 1 silencer
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Project Presentation

Objective :
clustering the cells based on the conformation of their
nucleolus
maximize the number of cluster

Hypothesis :

the cell of the same well should belong to the same cluster
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Project Presentation

After an image analysis processing, each cell is represented by a
15-dimensional characteristics’ vector xi ∈ R15

Example : elliptic regularity, number of connected component,
luminous intensity
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Project Presentation

Presence of the noice :
some cells of a well could not have reacted to the silencer
2D representation of a 3D cell
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Graph clustering

data points : x1, ..., xn ∈ Rp

similarity matrix : W = (wij)i ,j=1..n = w(xi , xj)
similarity graph G = (V ,E )
V : vertices (data points) E : edges with weight wij

Problem of clustering ↔ Partition the graph so that edges within a
group have large weights and edges across groups have small

weights.
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Construction of the connectivity matrix

For each vertices, selection of the m-nearest neighbors →
C (i , j) = 1 if j is one of the m-nearest neighbors of i and 0
otherwise.
C is not symmetric :

Cnorm = max(C ,C ′) → C (i , j) = 1 if i is one of the m-nearest
neighbors of j OR if j is one of the m-nearest neighbors of i :
each vertice has at least m neighbors (normal graph)
Cmut = min(C ,C ′) → C (i , j) = 1 if i is one of the m-nearest
neighbors of j AND if j is one of the m-nearest neighbors of i :
each point has at most m neighbors (mutual graph)

→ Connectivity matrix Cnorm or Cmut : sparse matrix
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Construction of the similarity matrix

If i and j are connected wij = e−
||xi−xj ||

2

2σ2 → σ controls the size of
the neighborhood
How to choose σ :

human-specified parameter
local scaling ([1] Zelnik-Manor, 2005) : one value of σ for each
point. Ex : σi = max

j
(||xi − xj ||) for j in the neighborhood of i
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Definitions

Degree of a vertice i : di =
∑n

j=1 wij

Degree diagonal-matrix with coefficients di : D
Laplacian matrix :

L = D −W

Normalized Laplacian matrix :
Lrw = D−1L

Lsym = D−1/2LD−1/2
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Numbers of connected components and spectrum of Lrw

The multiplicity k of the eigenvalue 0 of Lrw equals the number of
connected components A1, ...,Ak in the graph. The eigenspace of
the eigenvalue 0 is spanned by the indicator vector 1A1 , ...,1Ak
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Partitioning a graph

For two subsets A,B of V : W (A,B) =
∑

i∈A,j∈B wij

Two ways for mesuring the "size" of a subset A :

|A| : number of vertices in A

vol(A) =
∑

i∈A di

Two criteria to partitioning a graph :

cut(A1, ...,Ak) =
1
2

k∑
i=1

W (Ai ,Ai )

Ncut(A1, ...,Ak) =
1
2

k∑
i=1

W (Ai ,Ai )

vol(Ai )
=

k∑
i=1

cut(Ai ,Ai )

vol(Ai )
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Partitioning a graph

Minimize cut leads to solution which separate one individual
vertex from the rest of the graph.
By dividing the cut by vol(Ai ), we explicity request that the
sets A1, ...Ak are reasonably large.

Problem : minimizing Ncut is NP-Hard → Spectral clustering is a
way to solve relaxed version of this problem.
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Spectral clustering
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Why does it work ?

W =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 U =


0.7 0
0.7 0
0 0.7
0 0.7


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Why does it work ?

W =


1 1 0.2 0
1 1 0 0.1
0.2 0 1 1
0 0.1 1 1

 U =


−0.5 −0.4745
−0.5 −0.5243
−0.5 0.4745
−0.5 0.5243


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Information theoritic measures for clustering

Pb : How to evaluate the quality of a clustering ? ([3] Vinh 2010)

Basing the following array, we can compare two clusterings
K = (K1, ...,Kp) et C = (C1, ...,Cr )

with nij = |Ci ∩ Kj |
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Information theoritic measures for clustering

H(C ) = −
r∑

i=1

ai
n
log
(ai
n

)
Entropy

H(C |K ) = −
r∑

i=1

p∑
j=1

nij
n

log

(
nij
n
bj
n

)
Conditional entropy

I (C ,K ) =
r∑

i=1

p∑
j=1

nij
n

log

(
nij
N
aibj
N2

)
Mutual Information

I (C ,K ) = H(C )− H(C |K ) = H(K )− H(K |C )
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Information theoritic measures for clustering

NMI (K ,C ) =
I (K ,C )√
H(C )H(K )

Normalized Mutual Information

0 ≤ NMI (K ,C ) ≤ 1
if K = C then NMI (K ,C ) = 1
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Spectral Clustering vs Kmeans

Figure: Spectral Clustering vs Kmeans

23 / 37



Influence of σ (normal graph - 20 neighbors)
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Local scaling (normal graph - 20 neighbors)

25 / 37



Influence of the noise

Experimental protocol :
- given two gaussian distributions (1000 points in each) (µ1, σ1)
and (µ2, σ2) where µ1 and µ2 are fixed so that ||µ1 − µ2|| = 1. We
test our algorithm by varying σ1 and σ2 from 0.1 to 1
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Comparaison Normal Graph - Mutual Graph 2D

Normal graph Mutual graph
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Contour line Normal Graph - Mutual Graph 2D

Normal graph Mutual graph
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Comparaison Normal Graph - Mutual Graph 3D

Normal graph Mutual graph
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Comparaison Normal Graph - Mutual Graph 4D

Normal graph Mutual graph
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Results on biological data

Pb : the number of cluster k is unknown.
→ We test our algorithm for different values of k and we keep
which has the largest value of NMI
Database :
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Results on biological data

Figure: 2 Clusters (normal graph - 100 neighbors)
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Results on biological data
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Results on biological data

Figure: 4 Clusters
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Conclusion

Advantages of spectral clustering :
quite simple to implement
good results on our dataset

Future work :
use other algorithm than kmeans to separate eigenvector
clustering on one well of cells to identify the noise
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Thanks for your attention
Any questions ?
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