

Statistical models of the spine with applications in medical image processing

ISP Seminars, UCL - April 17th, 2013

Fabian Lecron

Fabian.Lecron@umons.ac.be

A Statistical Model?

Sub-space characterizing a variable X based on observations

Relevant informations about the model

- Statistical limits of the subspace
- Mean of the sample
- How does evolve X inside the sub-space?

Conventional Radiography

Advantages

- Relatively weak exposure to radiation
- Fast and not expensive \rightarrow widely used in ER

Disadvantages

- Human body only in 2D (not always a disadvantage)
- Poor quality

Objectives of my thesis

• Statistical models can help to deal with poor quality images

• Application to the analysis of the spine on radiographs

We'll see how to extract 2D or 3D spine shapes to compute clinical indices

Statistical model defined by PCA

 $x = \bar{x} + \phi d$

Statistical model defined by PCA

 $x = \bar{x} + \phi d$

Presentation Overview

- I. Models
 - Multilevel statistical shape model
 - Machine learning-based model

II. Vertebral Mobility

- Context
- Automatic vertebra detection
- Vertebra segmentation

III. Scoliosis

- Context
- 3D reconstruction with a statistical shape model
- 3D reconstruction with a machine learning-based model

IV. Conclusion

MODELS • MULTILEVEL STATISTICAL SHAPE MODEL • MACHINE LEARNING-BASED SHAPE MODEL

What if the shape has a hierarchical structure?

- In biomedical applications, data can have a hierarchical structure
- Usual models do not represent the link existing between the items of a structure
- Example: evaluating school performance of students

Multilevel Model

$$x_{i} = \bar{x} + \sum_{l=1}^{L-1} \phi_{W_{l},i} d_{W_{l}} + \phi_{B} d_{B}$$

 \rightarrow Global representation of the spine

MODELS • MULTILEVEL STATISTICAL SHAPE MODEL • MACHINE LEARNING-BASED SHAPE MODEL

These models are defined by statistical hypothesis

MODELS O MULTILEVEL STATISTICAL SHAPE MODEL • MACHINE LEARNING-BASED SHAPE MODEL

Shape modeling based on data separation

• A shape is modelized given an hyperplane representing a class of data :

Machine learning method: One-Class Support Vector Machine (OCSVM)

Separation defined with a kernel

The hyperplane is computed from a kernel function

• Only the inner product $k(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle$ is required

k(x, x_i): easy to define but not easy to choose !

Presentation Overview

- I. Models
 - Multilevel statistical shape model
 - Machine learning-based model

II. Vertebral Mobility

- Context
- Automatic vertebra detection
- Vertebra segmentation

III. Scoliosis

- Context
- 3D reconstruction with a statistical shape model
- 3D reconstruction with a machine learning-based model

IV. Conclusion

Vertebral Mobility

Measuring the vertebra orientations in different positions

VERTEBRAL MOBILITY • CONTEXT • AUTOMATIC VERTEBRA DETECTION • VERTEBRA SEGMENTATION

Mobility Analysis: a Fully Automatic Approach

Why is the mobility important?

- Helpful for diagnosis of vertebral pains (ex: trauma)
- Some pathologies imply a decrease of mobility \rightarrow need to quantify

Why a fully automatic approach?

- Quickly providing quantitative data
- No inter-operator variability
- Processing lots of images (ex: for medical research)

Measuring Protocol

Framework in Three Steps

Canny Edge Detector

Geometrical Definition of a Corner

Support Vector Machine

Interest Point Description

Descriptor: features about the module and the orientation of the gradient

Descriptors: SIFT and SURF

SIFT Descriptor

• 128 features

Invariant to scale, rotation and illumination

SURF Descriptor

• 64 features

- Invariant to scale and rotation
- Very fast

• Fast

- 49 radiographs : cervical vertebrae C3 to C7
- *leave-one-out* cross-validation
- Corner and vertebra detection rates
- Precision of classification
- Results depend on a parameter: window descriptor size

Type de vertèbre	Type de coin	Taux de détection	
C3 .	Sup.	93,3%	91.3%
	Inf.	93,3%	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C4 .	Sup.	97,8%	- 95,7%
	Inf.	100,0%	
C5 .	Sup.	100,0%	. 95,6%
	Inf.	97,7%	
C6 .	Sup.	95,4%	93.3%
	Inf.	97,7%	
C7 .	Sup.	75,0%	72,9%
	Inf.	75,0%	
Moyenne		92,5%	89,8%

TABLE 1.19: Taux de détection des coins et des vertèbres : SURF - Taille de fenêtre = 64 (avec application de la récupération des points non-détectés)

Active Shape Model

 $x = \bar{x} + \phi d$

Statistical Shape Model

Model of grey level variation around the shape

Initialization close to the object

Mean shape is placed near the detected vertebrae

The Model is Deformable

• The texture in the neighborhood of the landmarks is analyzed

Vertebral Mobility: Conclusion

- Inter-operator variability on radiographs: 3,14°
- Our approach vs. expert landmarking: between 3,15° and 3,36°
- \rightarrow Our approach is as precise as a group of radiologists
- Limitation: all the process relies on the good detection of the edges

Presentation Overview

- I. Models
 - Multilevel statistical shape model
 - Machine learning-based model
- II. Vertebral Mobility
 - Context
 - Automatic vertebra detection
 - Vertebra segmentation
- III. Scoliosis
 - Context
 - 3D reconstruction with a statistical shape model
 - 3D reconstruction with a machine learning-based model

IV. Conclusion

SCOLIOSIS • CONTEXT • RECONSTRUCTION - STATISTICAL SHAPE MODELS • RECONSTRUCTION - MACHINE LEARNING-BASED SHAPE MODEL

3D Deformation Represented with a 2D Clinical Measure

Cobb angle: widely used

The interest of 3D clinical indices has been shown in the literature

SCOLIOSIS • CONTEXT • RECONSTRUCTION - STATISTICAL SHAPE MODELS • RECONSTRUCTION - MACHINE LEARNING-BASED SHAPE MODEL

Reconstructing the Spine from Radiographs

Why using radiographs?

- Fast and not expensive
- CT-Scan: important exposure, lying position
- MRI: expensive, lying position

→ Disadvantage: weak image quality, poor contrast

What for?

- Scoliosis diagnosis
- Personalized Treatments
- Surgery planning

General Principle

Optimization of two measures:

• Reprojection error

• Similarity of the deformed shape with the statistical model

3D Representation with Anatomical Landmarks

Statistical Shape Model

 $x = \bar{x} + \phi d$

Multilevel Model

$$x_{i} = \bar{x} + \sum_{l=1}^{L-1} \phi_{W_{l},i} d_{W_{l}} + \phi_{B} d_{B}$$

Convex Optimization

SOCP (Second Order Cone Programming) formulation:

$$\begin{cases} \min & f(x) \\ s.c. & ||A_i x + b_i||_2 - (c_i^T x + d_i) \le 0 \quad i = 1, \dots, m \end{cases}$$

Advantage: the solution is found very quickly

$$\begin{cases} \min & t \\ s.c. & \left\| \Sigma^{-1/2} \left(X - \bar{X} \right) \right\|_{2} \leq t, \\ & \left\| \begin{pmatrix} P_{1}^{j} - P_{3}^{j} u_{k,x}^{j} \\ P_{2}^{j} - P_{3}^{j} u_{k,y}^{j} \end{pmatrix} \begin{pmatrix} X_{k} \\ 1 \end{pmatrix} \right\|_{2} \leq \gamma_{max} P_{3}^{j} \begin{pmatrix} X_{k} \\ 1 \end{pmatrix} \end{cases}$$

Very Fast Solving

$$\begin{cases} \min t \\ s.c. \quad \left\| \Sigma^{-1/2} \left(X - \bar{X} \right) \right\|_{2} \leq t, \\ \left\| \begin{pmatrix} P_{1}^{j} - P_{3}^{j} u_{k,x}^{j} \\ P_{2}^{j} - P_{3}^{j} u_{k,y}^{j} \end{pmatrix} \begin{pmatrix} X_{k} \\ 1 \end{pmatrix} \right\|_{2} \leq \gamma_{max} P_{3}^{j} \begin{pmatrix} X_{k} \\ 1 \end{pmatrix} \end{cases}$$

Statistical Shape Model

$$x = \bar{x} + \phi d$$

Multilevel Statistical Shape Model

$$x_{i} = \bar{x} + \sum_{l=1}^{L-1} \phi_{W_{l},i} d_{W_{l}} + \phi_{B} d_{B}$$

- 20 severe cases: Cobb angle between 44° and 70° (Sainte-Justine Hospital, Montréal)
- 25 cases with surgical instrumentation → presence of discontinuities in the spine
- I7 vertebrae are reconstructed: T1 to L5
- Reconstruction error: euclidean distance to a reference 3D model

Reconstruction time

Reconstruction Error

Plates

Pedicles

Time of reconstruction

Reconstruction algorithm based on the minimization of two measures:

$$f = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{K} \left\| p_{i,j,k}^{2D} - \tilde{p}_{i,j,k}^{2D} \right\|_{2}^{2} + \beta \left(\frac{1}{s} \right)^{2}$$

Two Particular Kernels

- Hyperplane is defined by a kernel
- A kernel is actually a similarity measure
- Proposed kernel:

RBF:
$$K(x, y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$
 Mahalanobis: $K(x, y) = e^{-\frac{(x-y)^T \Sigma^{-1}(x-y)}{\sigma}}$

Two Representations

Representation with landmarks:

$$X = (p_1^{abs}, p_2^{abs}, \dots, p_k^{abs}, \dots, p_m^{abs})$$

Articulated representation:

$$X = (T_1, T_2, \dots, T_n, p_{1,1}, p_{1,2}, \dots, p_{n,m})$$

Reconstruction Error

Comparison with Statistical Shape Model

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \|w\|^2 + \frac{1}{\nu m} \sum_{i=1}^m \xi_i - b$$

Outliers in the sample

Sensitivity

Presentation Overview

- I. Models
 - Multilevel statistical shape model
 - Machine learning-based model
- II. Vertebral Mobility
 - Context
 - Automatic vertebra detection
 - Vertebra segmentation

III. Scoliosis

- Context
- 3D reconstruction with a statistical shape model
- 3D reconstruction with a machine learning-based model

IV. Conclusion

Conclusion

→ Interest of these models to extract the shape of the spine in 2D and 3D

→ These models allow to choose conventional radiography instead of more harmful or more expensive modalities

Conclusion

Vertebral Mobility

Contribution : Automatic analysis of cervical vertebral mobility

ightarrow The statistical shape model guides the segmentation

Scoliosis in 3D

Contribution : Interactive reconstruction based on statistical shape models

Contribution : Robust reconstruction based on OCSVM

 \rightarrow Reduction of the human intervention

Future Work

Models

- Can be applied to other « objects » (e.g. organs of the human body, etc.)
- Can be used as statistical tools to study a pathology (e.g. evolution of vertebral deformations over time)

Vertebral Mobility

- Extension of the approach to other modalities (e.g. videofluoroscopic system)?
- Other descriptors?

Scoliosis in 3D

- What about EOS system?
- OCSVM: simpler similarities
- Kernel-PCA so that the OCSVM shape model can be used as a statistical tool