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cutoff frequency information content

• More samples

• More acquisition time

• Higher dimensional data
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Sparsity Basis Different basis for different purposes!Fourier, Wavelets, etc.
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NP-hard Conditions on matrix Φ to guarantee

Depend on the recovery algorithm
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To find the optimaloptimal solution to 
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in order to reconstruct the original signal x

• IHT
• LIHT
• FLIHT
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� ITERATIVE HARD-THRESHOLDING (IHT)
Based on the gradient descent method.
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� ITERATIVE HARD-THRESHOLDING (IHT)
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• Simple One of the most used algorithms

• Condition for matrix Φ

• Low convergence rate and not possible to improve.

• For
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V. Cevher, “An ALPS view of sparse recovery”.
Laboratory for Information and Interference Systems,
École Polytechnique Fédérale de Lausanne (EPFL),
2010.
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2010.

• Lipschitz Iterative Hard-Thresholding (LIHT).

• Fast Lipschitz Iterative Hard-Thresholding (FLIHT).
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� Cevher’s work – Conditions on matrix Φ.
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Random matrix Φ must satisfy RIP with

must be k-RIP

Incoherent measurements.

Random Gaussian, Random Fourier Ensemble.

( )( )NkM logΟ=
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� Cevher’s work – RIP and Lipschitz Continuity
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B. Bah, J. Tanner. “Improved bounds on Restricted

Isometry Constants for Gaussian matrices”. SIAM

J. Matrix Anal. Appl. Vol. 31(5): 2882-2898
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� LIPSCHITZ ITERATIVE HARD-THRESHOLDING (LIHT)
Based on the gradient descent method.
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� LIPSCHITZ ITERATIVE HARD-THRESHOLDING (LIHT)
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• Simple

• Convergence rate depending on L2k.

• For

 kk 22
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� FAST LIPSCHITZ ITERATIVE HARD-THRESHOLDING (FLIHT)
Based on the Nesterov’s Optimal Gradient Method.
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� FAST LIPSCHITZ ITERATIVE HARD-THRESHOLDING (FLIHT)
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• Two-level condition.

• Convergence rate depending on L3k.

• For ( ) ( ) ε≤−+ ii xfxf 1 
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� PHASE TRANSITION DIAGRAMS

• CS behavior of the algorithm.

• Amount of measurements MM to take in order to recover an

ConclusionsIntroduction Optimization Problems CS Recovery Algorithms

• Amount of measurements MM to take in order to recover an
NN-dimensional signal with kk amount of information.

• Analysis in the sparsity-undersampling domain:

M

k=ρ
N

M=δ

Compression trade-off Under-sampling ratio
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J. Tanner, “Regular Polytopes and Cone,” 2010. http://ecos.maths.ed.ac.uk/polytopes.shtml
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� SIMULATIONS

• N = 1000 and variation of k and M.

• Φ a Random Gaussian Matrix.
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• Maximum of 1000 iterations with a stop criterion.

• Averages values for the probability of success over 100 trials.
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� Expected Results:

• Phase transitions for FLIHT approximate better to the

theoretical curve than the ones for IHT and LIHT, thus providing a

higher probability of success for lower values of δ and ρ.

• Similar when comparing LIHT with IHT.

CONCLUSIONSCONCLUSIONS
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• Similar when comparing LIHT with IHT.

� Important advance in CS.

• Optimal signal recovery with less measurements and more

information.

• Improve of IHT (basis of a great part of sparse signals

reconstruction methods) without a significant increment of the

computing and storage complexity of each iteration step.
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� Results dependency on the properties of the measurement
matrix.

• If the matrix is not bounded, the algorithms diverge and

solving the optimization problem becomes NP-hard.

� Improvements

CONCLUSIONSCONCLUSIONS
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� Improvements

• Results could be further improved by decreasing the values of

Lipschitz gradient constants.

� Likely to have better convergence rates and a better

approximation to the theoretical curve.

• Increasing problem dimension.
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