

Optimal Dense Disparity Map Quantization and Residual Prediction for Lossless Stereo Image Coding

Presented by:

Amit Kumar K.C.

15th December 2010

Organization of presentation

- Objectives
- Introduction
- [Proposed scheme]
- Results
- Comparison with other schemes

Stereo images

Left image

Right image

• DISPARITY

- Amount of shift needed such that a pixel on left image corresponds to that on right image
- RESIDUE
 - The difference between actual pixel intensity and disparity compensated pixel intensity

$$\underline{v}^{*}(\underline{x}) = \frac{\operatorname*{argmin}}{\underline{v}(\underline{x})} d(I^{(r)}(\underline{x}), I^{(l)}(\underline{x} + \underline{v}(\underline{x})))$$

$$D(\underline{x}) = I^{(r)}(\underline{x}) - I^{(l)}(\underline{x} + \underline{v}^{*}(\underline{x}))$$

 $I^{(r)}$ →right image $I^{(I)}$ →left image v^* →disparity vector

 $d(a,b) \rightarrow distance metric between a and b$ $D \rightarrow Residual image$

Introduction

•Block matching algorithm for disparity estimation/compensation

•Transform coder: DCT, DWT

•DWT is preferred for digital cinema, HD images, medical images

 Normalized correlation → max, block illumination shift
 [Darazi09]

Proposed scheme-encoder

Proposed scheme-decoder

Illumination compensation

Illumination compensation

•Global illumination compensation

•Homomorphic filter

•Only one coefficient and two flag bits per image pair

 $I[m,n] = L[m,n] \times R[m,n]$ $\frac{\text{Reflectance factor:}}{\alpha_{opt}} = \frac{\arg\min}{\alpha} KL(h_l, h_r)$ $KL(h_l, h_r) = \frac{1}{2} \left[\sum h_l \log_2 \left(\frac{h_l}{h_r}\right) + \sum h_r \log_2 \left(\frac{h_r}{h_l}\right) \right]$ $\frac{\text{Reflectance factor:}}{\text{Slow varying}}$ $\frac{\text{Reflectance factor:}}{\text{Represents object}}$

Histograms of left and right images

250

corr

uncorr

80

Results

	Before Compensation		After Compensation			Flags			
Image	Bit	rate	KL Distance	Bitrate		KI			X opt
	$egin{array}{c} \mathbf{DV} \ \mathbf{R}^{(\mathrm{v})} \end{array}$	Residue R ^(e)		DV R ^(v)	Residue R ^(e)	Distance	I 1_ I 2	Send	
Apple	0.85	4.54	6.09	0.87	4.54	5.35	1	0	0.9997
Shrub	0.13	3.45	1.12	0.10	3.27	0.07	1	1	0.9867
J1	1.28	4.56	0.62	0.89	4.24	0.38	0	1	0.9857
Walker1	0.95	4.98	0.30	0.91	4.88	0.20	0	1	0.9692
Walker9	0.97	5.06	0.27	0.95	4.94	0.19	0	1	0.9687
Fruit	0.54	4.08	1.31	0.49	4.05	0.10	1	1	0.9892
Tsukuba	0.35	3.51	0.44	0.35	3.51	0.11	0	0	1.0003
HouseOf	0.72	5.37	1.09	0.71	5.36	0.01	0	1	0.9952

Disparity estimation and optimal quantization

Disparity estimation and optimal quantization (Contd...)

Optical flow based disparity estimation ^{Zach07}

$$u^* = \frac{\arg\min}{u} \left[\int |\nabla u| dx + \lambda \int \left| I^{(l)}(x+u,y) - I^{(r)}(x,y) \right| dx \right]$$

- Regularization: TV-norm
- Data term: L₁-norm
- Choice of $\boldsymbol{\lambda}$
 - Choose $\boldsymbol{\lambda}$ that minimizes total bit-rate

$$\begin{split} \underline{u}(\underline{x}) &= \left[u_x(\underline{x}) \ u_y(\underline{x})\right]^T \\ \underline{u}^* &= \frac{\operatorname{arg\,min}}{\underline{u}} J(\underline{u}) \\ J(\underline{u}) &= \int |\nabla u| d\underline{x} + \lambda \int \left|I^{(l)}(\underline{x} + \underline{u}(\underline{x})) - I^{(r)}(\underline{x})\right| d\underline{x} \\ u_y &= 0 \Rightarrow \underline{u} \equiv u \\ J(u) &\approx \int |\nabla u| d\underline{x} + \lambda \int \left|I^{(l)}(\underline{x}) + u(\underline{x})I_x^{(l)}(\underline{x}) - I^{(r)}(\underline{x})\right| d\underline{x} \\ J(u) &\approx \int |\nabla u| d\underline{x} + \lambda \int \left|\rho(u,\underline{x})\right| d\underline{x} \\ J(u) &\approx \int |\nabla u| d\underline{x} + \lambda \int \left|\rho(u,\underline{x})\right| d\underline{x} \\ \end{split}$$

For fixed v, solve for u

$$arg \min u \int \left[|\nabla u| + \frac{1}{2\theta} (u - v)^2 \right] dx$$

$$u = v - \theta \, div(\underline{p})$$

$$\underline{p}^{k+1} = \frac{\underline{p}^k + \tau \nabla (div(\underline{p}^k) - v/\theta)}{1 + \left| \tau \nabla (div(\underline{p}^k) - v/\theta) \right|} \qquad \underline{p}^0 = \underline{0}, \tau \le 1/8$$

$$\frac{\text{For fixed } u, \text{ solve for } v}{v} \int \left[\lambda |\rho(u)| + \frac{1}{2\theta} (u - v)^2 \right] dx$$
$$v = u + \begin{cases} \lambda \theta I_x^{(l)} & \text{if } \rho(u) \leq -\lambda \theta I_x^{2(l)} \\ -\lambda \theta I_x^{(l)} & \text{if } \rho(u) > \lambda \theta I_x^{2(l)} \\ -\frac{\rho(u)}{I_x^{(l)}} & \text{otherwise} \end{cases}$$

<u>Choice of λ </u>

<u>Higher values of λ </u>

More weight on data termHigh bitrate for disparity but low for residue.

Lower values of λ

Less weight on data term
Low bitrate for disparity but high bitrate for residue

$$u^* = \frac{\arg\min}{u} \left[\int |\nabla u| dx + \lambda \int \left| I^{(l)}(x+u,y) - I^{(r)}(x,y) \right| dx \right]$$

<u>Results</u>

Estimated disparity map

Image (Left only)

Residual image

Ground truth

Optimal quantization of dense disparity

<u>map</u>

- Allows tradeoff between bitrate of disparity map and that of residual image.
 Optimal quantization is chosen
- Optimal quantization is chose that minimizes the overall bitrate.
- Not possible with classical methods.

- No side information required.
- Compatible with JPEG2000.

Amit Kumar K.C., Rony Darazi and Benoit Macq '*Optimal optical flow based disparity map estimation for lossless stereo image coding*,' *Electronic Imaging, IS&T/SPIE, San Francisco, California, USA, 2011*

Optimal quantization

- Rates at which bitrates for disparity map and residual image vary are different.
- Initially, R^(v) decreases rapidly, R^(e) increases slowly.
- After some quantization level, R^(v) decreases slowly whereas R^(e) increases substantially.

<u>Results</u>

<u>Results</u>

Image	Bitrates [bpp] Before Optimization			Bitrates [bpp] After Optimization			
	Disparity	Residue	Total	Disparity	Residue	Total	
Tsukuba	0.35	3.51	3.86	0.11	3.59	3.70	
Fruit	0.49	4.05	4.54	0.06	4.10	4.16	
Pentagon	0.64	5.11	5.75	0.06	5.21	5.27	
Apple	0.87	4.54	5.41	0.10	4.72	4.82	
HouseOf	0.71	5.36	6.07	0.08	5.45	5.53	
Corridor	0.28	2.05	2.33	0.06	2.09	2.15	
Birch	0.97	4.56	5.53	0.05	4.72	4.77	
Shrub	0.10	3.27	3.37	0.05	3.27	3.32	
Average	0.55	4.06	4.61	0.07	4.14	4.21	

Optimized filter

- Minimum variance → Minimum entropy
 [For residual signal]
- Design a filter <u>α</u> such that the variance of residual image is minimized.

$$\underline{X}_{n} = [x_{1} \dots x_{K}]^{T} \quad n = 1 \dots MN \quad \rightarrow neighbourhood of current pixel at n$$

$$\underline{X} = [\underline{X}_{1}^{T} \dots \underline{X}_{MN}^{T}]^{T} \qquad \rightarrow all \ pixels of \ input \ image$$

$$\underline{Y} = [y_{1} \dots y_{MN}]^{T} \qquad \rightarrow all \ pixels of \ output \ image$$

$$\underline{\alpha} = [\alpha_{1} \dots \alpha_{K}]^{T} \qquad \rightarrow filter \ coefficients$$

<u>Results</u>

		Bitrate [bpp]					
Image	Filter size	Unfiltered	Linear Filtering	Nonlinear Filtering			
Fruit	3×3	115	3.55	3.59			
	5×5	4.15	3.50	3.53			
Pentagon	3×3	5.22	4.74	4.73			
	5×5	5.55	4.79	4.77			
Apple	3×3	4 75	4.40	4.39			
	5×5	4.75	4.47	4.46			
HouseOf	3×3	E EQ	5.13	5.10			
	5×5	5.50	5.16	5.13			
Birch	3×3	4 70	4.27	4.30			
	5×5	4.70	4.19	4.23			

Hybrid wavelet encoding

<u>Hybrid wavelet encoding</u> (Contd...)

Ismael08

- Shorter filters around edges of the residue
 - Due to occlusions and mismatches
 - Reduces ringing artifacts
 - Haar wavelet transform
- Longer filters for smooth areas
 - 5/3 wavelet transform

Approximate the edge map by

- •Edges in disparity map \rightarrow characterize occlusion
- •Edges in disparity compensated left image \rightarrow characterize mismatch

<u>Results</u>

Residue

Rony Darazi, **Amit Kumar K.C**. and Benoit Macq, "Using Depth Map for Directional Adaptive Lifting Scheme for Stereo Image Residuals", Submitted for ISCAS11

Results (Contd...)

	Entropy [bpp]					
Image	5/3 Transform	Haar Transform	Hybrid Transform			
Fruit	2.44	2.64	2.38			
Pentagon	4.31	4.29	4.20			
Baseball	4.71	4.86	4.52			
Tsukuba	2.49	2.36	2.31			
Ball1	2.94	3.33	2.89			
Apple	4.09	3.98	3.91			
HouseOf	4.22	4.28	4.18			
Corridor	1.79	1.79	1.54			
Pm	3.02	3.12	2.96			
Book	2.95	3.11	2.80			

Putting it all together

Image		Vector Lift Kaanio	ting Scheme che et al.	Proposed Scheme		
	Baseline Scheme I ⁽¹⁾ , I ^(e)	VLS-I	VLS-II	J=2	J=3	J=4
Fruit	4.05	3.78	3.72	3.83	3.73	3.71
Shrub	3.73	3.81	3.63	3.53	3.45	3.44
Birch	4.52	4.44	4.37	4.19	4.01	3.96
Pentagon	5.37	5.12	5.04	5.10	5.00	4.99
Average	4.42	4.29	4.19	4.18	4.08	4.03

Test Images

Apple

HouseOf

Fruit

Pentagon

Tsukuba

Shrub

Bibliography

- Woontack Woo and Antonio Ortega, "Stereo image compression with disparity compen- sation using the mrf model," in Proc. SPIE VCIP, 1996, pp. 28–41.
- M. Kaaniche, A. Benazza-Benyahia, B. Pesquet-Popescu, and J.-C. Pesquet, "Vector lifting schemes for stereo image coding," Image Processing, IEEE Transactions on, vol. 18, no. 11, pp. 2463 –2475, nov. 2009.
- A. Gouze, M Antonini, M Barlaud, and B. Macq, "Design of signal adapted multidimen- sional lifting scheme for lossy coding," 2004, pp. 1589–1603.
- C. Zach, T. Pock, and H. Bischof, "A duality based approach for realtime tvl1 optical flow," in Pattern Recognition (Proc. DAGM), Heidelberg, Germany, 2007, pp. 214–223.

Thank you very much