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Context: machine learning

A machine learning classic: hand-written digit recognition

L“This iIs a two”

MNIST dataset

Verrrry difficult to program explicitly!
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Machine learning limitations :-(

Large datasets means:
- Large memory required
 Slow learning algorithm

BUT extracted “knowledge” is “simple”
-> do we really need all this data?

NO!

(otherwise this talk would be finished)




Compressive learning
(from a sketch)

Dataset

Learning algorithm

<

Model

Sketch

- Compressed representation

* Preserves relevant information

[Gribonval17]



Compressing a dataset?

N examples
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Compressing a dataset?

N examples
—— N examples
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- Compressed representation
* Preserves relevant information
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Dataset

Compressing a dataset?

N examples

77 70007

L»mi c R"
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N examples
/_/%

Dimensionality
reduction
7 .
R" — RP
L»yi c RP

- Compressed representation
* Preserves relevant information
- Constant number of examples x

N can be VERY large (“big data”)!



Dataset ===

Compressing a dataset!

N examples

Sketching
X = q cC”

Sketch &2

- Compressed representation
* Preserves relevant information
- Dataset summary = single vector

13 [Gribonval17]



Sketch of a dataset

Sketching
m
X = 1 B (Rl B c C
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Sketch of a dataset

Sketching
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x; EX

1. Project on (random) vectors

wj U A (cfr. later)
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Sketch of a dataset

Sketching
m
X = 1 B (Rl B c C

L % Z e—iw?mi

x; EX

1. Project on (random) vectors
2. Nonlinear periodic signature function
3. Pooling (average)



Sketch of a distribution

Sketching: an operator on probability distributions!
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Inut: probability distribution Output: m» moments of it
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Sketch of a distribution

Sketching: an operator on probability distributions!

A(P) := Epp [e_i“’gT ]’”

.

7=1

A

Particular case: dataset <-> empirical distribution 2 xy = ./4(7) X)

L2

2-D example
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Sketch interpretation (1)

Sketch of P = Random Fourier sampling of P
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Sketch of P = Random Fourier sampling of P A(P) j = QbP (wj)

A

Px

A

Sampling at
J Cu2 w]' ~ A

I L
III@»W /F —»\

Characteristic function: characterises P

(who would have guessed?)

pr(w) = R pe€




Sketch interpretation (1)

Sketch of P = Random Fourier sampling of P A(P) j = QbP (wj)

Sampling at
(..Oj ~ A
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P “Low-pass filter”

]

—iwle m
=Ezop {e J } _ 22
J=1



Sketch interpretation (1)

Sketch of P = Random Fourier sampling of P A(P) j = QbP (wj)

4 Sampling at

N

» “Low-pass filter”

In practice:
m e Application-dependent
' > e Requires some data
|w]

A(P) i=Equp |e %] 23 See also: Distilled sensing
j=1




Sketch interpretation (2)

Sketch of P = view P through kernel K : “Similarity measure”

tA(w) tK ()
l F )
m Bochners Thm. /\
T w ]
ourier domain Direct domain

A(P) i= Egrp [e77] ; 24 [Rahimi0g]



Sketch interpretation (2)

Sketch of P = view P through kernel K : “Similarity measure”
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Sketch interpretation (3)

Sketch of P = low-dimensional embedding of P
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Sketch interpretation (3)

Sketch of P = low-dimensional embedding of P

pdf space
o @

¢

Hilbert space E E .
defined by K :V‘X\PIOJ K Q Preserved distance?
PrOj KP

A(P) :=Egp [e‘i“’a‘T“’L:1 29 [Sriperumbudur11]



Sketch interpretation (3)

Sketch of P = low-dimensional embedding of P

pdf space
o @
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Hilbert space E E .
defined by K :V{PIOJ K Q Preserved distance?
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Infinite-dimensional Compressed Sensing!

A(P) :=Egup [e_i“’jT‘”L:l 30 [Keriven16-GMM]



Sketch interpretation (3)

Sketch of P = low-dimensional embedding of P

pdf space
dim = oo

Underlying assumption:

P € (insert sparse set here)
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Sketch interpretation (3)

Sketch of P = low-dimensional embedding of P

pdf space
dim = oo

Underlying assumption:

P € (insert sparse set here)

B Defined by the application

Infinite-dimensional Compressed Sensing!

A(P) = Egp [e*w?w}Z;l 32



Compressive clustering

Usually (K-means,...)
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Compressive clustering

Usually (K-means,...)

A

X ={x; e R"};.; (_\’7
i

Goal: centroids

K
lterative algorithm C = {Ck }k:l

A
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Compressive clustering

| x »leé(cm

34 [Keriven16-CKM]



Compressive clustering

C = {Ck}szl
n R
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Compressive clustering

C = {Ck}kK:1
9 A

.

Sketch matching! (cfr. CS) @
mmHzX — Z&k5ck IE:

g SParse model:
7 mixture of K diracs
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Compressive clustering

Sketch matching! (cfr. CS)

m1n||zX A( Zak5ck B
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Compressive clustering

Sketch matching! (cfr. CS)

m1n||zX A( Zak&;k B
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Compressive clustering

Sketch matching! (cfr. CS) ..~

minllex — A e )} a2
o k=1 /\

Highly non-convex problem!
=> CS-based heuristics

\ Compared by
the sketch distance

39



The power of the sketch

Number of “me ements” m needed? Qrmatb@
%I m = O(nK)




The power of the sketch

Number of “measurements” m needed? grmatb@

No dependence on !




The power of the sketch

Number of “measurements” m needed? grmatb@

No dependence on !

+ easy update/parallel computing of zx
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Sketch
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Sketch




Quantized sketch (my work)

ol @
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No easy hardware implementation x
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Quantized sketch (my work)

Dithering (detail)

L, g L oqm
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_ x; X d5=1

LSB of quantizer => hardware friendly

¢ 1QAa(?)

>

46
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New sketch operator!

Validated on clustering
m=0(nK) increase but ok!



Quantized sketch (my work)

Dithering (detail)

s B L oqm
ﬁ =277 QX T |\ Z QA(WJT% &)
B x; X 1 45=1

LSB of quantizer => hardware friendly

¢ 1QAa(?)

p Discontinuous objective

47 | /\ => gradient KO?

t

' New sketch operator!

Validated on clustering
m=0(nK) increase but ok!



What does it mean?

Sketch interpretation is (only a littie bity modified
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48 See also: 1-bit universal embeddings



What will | do next?

Some things | look forward to do:

* Other tasks than clustering

* Other sketch functions

* Theoretical guarantees

* Algorithmic guarantees (local convexity?)
* New applications (e.g. in HS imaging?)

49



Thank you for your attention!
Questions?
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