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Context: machine learning
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“This is a two”

Verrrry difficult to program explicitly!

MNIST dataset

A machine learning classic: hand-written digit recognition
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Machine learning limitations :-(
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Large datasets means: 
• Large memory required 
• Slow learning algorithm

BUT extracted “knowledge” is “simple” 
-> do we really need all this data?

NO! 
(otherwise this talk would be finished)



Compressive learning 
(from a sketch)
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Learning algorithmDataset Model

Sketch

• Compressed representation 
• Preserves relevant information

[Gribonval17]



Compressing a dataset?
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Dataset

X = , , ,, · · · ,

z }| {N examples

xi 2 Rn

n-dimensional
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Compressing a dataset?
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Dataset

• Compressed representation 
• Preserves relevant information 
• Constant number of examples

X = , , ,, · · · ,

z }| {N examples

xi 2 Rn

, , ,, · · · ,

z }| {

yi 2 Rp

Rn ! Rp

Dimensionality 
reduction

N examples

N can be VERY large (“big data”)!



Compressing a dataset!
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Dataset

• Compressed representation 
• Preserves relevant information 
• Dataset summary = single vector

X = , , ,, · · · ,

z }| {N examples

xi 2 Rn

Sketching

Sketch

zX = 2 Cm

[Gribonval17]



Sketch of a dataset
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X = , , ,, · · · ,
Sketching

zX =

zX =

"
1

N

X

xi2X

e�i!T
j xi

#m

j=1

???

2 Cm



Sketch of a dataset
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X = , , ,, · · · ,
Sketching

zX =

1. Project on (random) vectors 
2. Preserves relevant information 
3. Dataset summary = single vector

zX =

"
1

N

X

xi2X

e�i!T
j xi

#m

j=1 !j ⇠ ⇤ (cfr. later)

2 Cm



Sketch of a dataset
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X = , , ,, · · · ,
Sketching

zX =

1. Project on (random) vectors 
2. Nonlinear periodic signature function 
3. Dataset summary = single vector

zX =

"
1

N

X

xi2X

e�i!T
j xi

#m

j=1

2 Cm



Sketch of a dataset
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X = , , ,, · · · ,
Sketching

zX =

1. Project on (random) vectors 
2. Nonlinear periodic signature function 
3. Pooling (average)

zX =

"
1

N

X

xi2X

e�i!T
j xi

#m

j=1

2 Cm



Sketch of a distribution
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Sketching: an operator on probability distributions!

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1

Input: probability distribution Output: m moments of it



Sketch of a distribution
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Sketching: an operator on probability distributions!

zX = A(P̂X)Particular case: dataset <-> empirical distribution

P̂X =
1

N

X

xi2X

�
xi

P̂XX

2-D example

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1

x1
x1

x2

x2



Sketch interpretation (1)
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Sketch of P = Random Fourier sampling of P

P̂X

F

x1

x2
!
2

!1

�P(!) := E
x⇠P e�i!T

x

�P̂X

Characteristic function: characterises P 
                                                                       (who would have guessed?)

Bijective!

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (1)
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Sketch of P = Random Fourier sampling of P

!j ⇠ ⇤

P̂X

F

x1

x2
!
2

!1

�P(!) := E
x⇠P e�i!T

x

�P̂X

Characteristic function: characterises P 
                                                                       (who would have guessed?)

Bijective!

Sampling at

zX =

A(P)j = �P(!j)

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (1)
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Sketch of P = Random Fourier sampling of P A(P)j = �P(!j)

!j ⇠ ⇤

P̂X

F

x1

x2
!
2

!1

�P̂X Sampling at

zX =

???

Typically:

k!k

⇤(!)
“Low-pass filter”

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (1)
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Sketch of P = Random Fourier sampling of P A(P)j = �P(!j)

!j ⇠ ⇤

P̂X

F

x1

x2
!
2

!1

�P̂X Sampling at

zX =

???

Typically:

k!k

⇤(!)
“Low-pass filter”

In practice: 
• Application-dependent 
• Requires some data

See also: Distilled sensingA(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (2)
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Sketch of P = view P through kernel K : “Similarity measure”

k!k

⇤(!)
F

Bochners Thm.

K(x)

kxk
Direct domainFourier domain

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1

[Rahimi08]



Sketch interpretation (2)
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Sketch of P = view P through kernel K : “Similarity measure”

P̂X

x1

x2

k!k

⇤(!)
F

Bochners Thm.

K(x)

kxk
Direct domainFourier domain

*
K(x)

=

ProjK
ˆPX

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1

x1

x2



Sketch interpretation (3)
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Sketch of P = low-dimensional embedding of P

pdf space

Pdim = 1

AP

Cm

A

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (3)
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Sketch of P = low-dimensional embedding of P

pdf space

Pdim = 1

AP

AQ
Q Cm

A

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1
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Sketch of P = low-dimensional embedding of P

pdf space

Pdim = 1

AP

AQ
Q Cm

Preserved distance?

?
A

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (3)
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Sketch of P = low-dimensional embedding of P

pdf space

Pdim = 1

AP

AQ
Q

ProjKQ

ProjKP

Cm

Preserved distance?

?
A

⇤K
Hilbert space 
defined by K

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1

[Sriperumbudur11]



Sketch interpretation (3)
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Infinite-dimensional Compressed Sensing!

Sketch of P = low-dimensional embedding of P

pdf space

Pdim = 1

AP

AQ
Q

ProjKQ

ProjKP

Cm

Preserved distance?

?
A

⇤K
Hilbert space 
defined by K

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1

[Keriven16-GMM]



Sketch interpretation (3)
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Infinite-dimensional Compressed Sensing!

Sketch of P = low-dimensional embedding of P

pdf space
Pdim = 1

AP

AQ
Q Cm

P 2 (insert sparse set here)
Underlying assumption:

A

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Sketch interpretation (3)
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Infinite-dimensional Compressed Sensing!

Sketch of P = low-dimensional embedding of P

pdf space
Pdim = 1

AP

AQ
Q Cm

P 2 (insert sparse set here)
Underlying assumption:

Defined by the application

A

A(P) := E
x⇠P

h
e�i!T

j x

im
j=1



Compressive clustering

33

Usually (K-means,…)

Iterative algorithm
N

X = {xi 2 Rn}Ni=1

Goal: centroids

C = {ck}Kk=1
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Usually (K-means,…)

Compressive clustering

Iterative algorithm

Goal: centroids

m

N

N

X = {xi 2 Rn}Ni=1

zX = 2 Cm

C = {ck}Kk=1

[Keriven16-CKM]



Compressive clustering
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m
zX = 2 Cm

C = {ck}Kk=1

?



Compressive clustering
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m
zX = 2 Cm

C = {ck}Kk=1

?

min
C,↵

kzX �A(
KX

k=1

↵k�ck)k22

Sketch matching! (cfr. CS)

Sparse model: 
mixture of K diracs



Compressive clustering
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Sketch matching! (cfr. CS)

min
C,↵

kzX �A(
KX

k=1

↵k�ck)k22

P̂X

x1

x2

x1

x2

KX

k=1

↵k�ck



Compressive clustering

38

Sketch matching! (cfr. CS)

min
C,↵

kzX �A(
KX

k=1

↵k�ck)k22

P̂X

x1

x2

*
K(x)

=
x1

x2

x1

x2

*
K(x)

=
x1

x2

KX

k=1

↵k�ck

Compared by 
the sketch distance



Compressive clustering
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Sketch matching! (cfr. CS)

min
C,↵

kzX �A(
KX

k=1

↵k�ck)k22

P̂X

x1

x2

*
K(x)

=
x1

x2

x1

x2

*
K(x)

=
x1

x2

KX

k=1

↵k�ck

Compared by 
the sketch distance

Highly non-convex problem!  
=> CS-based heuristics



The power of the sketch
Number of “measurements” m needed?

m = O(nK)

~ information rate
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The power of the sketch
Number of “measurements” m needed?

m = O(nK)
No dependence on N !

+ easy update/parallel computing of zX

Same learning time! 
More data = better estimation of pdf

~ information rate
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Sketch

Signal acquisition

Dataset

Sketch computation

$$$$$ $$$$$



BUT…
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Sketch

Signal acquisition

Dataset

Sketch computation

$$$$$

Why not do:

Sketch

Direct sketch acquisition

$$$

$$$$$



Quantized sketch (my work)
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= ??? zX =

"
1

N

X

xi2X

e�i!T
j xi

#m

j=1

No easy hardware implementation



Quantized sketch (my work)
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= ???

LSB of quantizer => hardware friendly

Q�(t)

t�

zQ,X =

"
1

N

X

xi2X

Q�(!
T
j xi + ⇠j)

#m

j=1

Dithering (detail)

New sketch operator!
Validated on clustering 
m=O(nK) increase but ok!



Quantized sketch (my work)
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= ???

LSB of quantizer => hardware friendly

Q�(t)

t�

zQ,X =

"
1

N

X

xi2X

Q�(!
T
j xi + ⇠j)

#m

j=1

Dithering (detail)

New sketch operator!
Validated on clustering 
m=O(nK) increase but ok! Discontinuous objective 

=> gradient KO?



What does it mean?
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Sketch interpretation is (only a little bit) modified

See also: 1-bit universal embeddings
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What will I do next?
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Some things I look forward to do: 
• Other tasks than clustering 
• Other sketch functions 
• Theoretical guarantees 
• Algorithmic guarantees (local convexity?) 
• New applications (e.g. in HS imaging?) 
• …



Thank you for your attention! 
Questions?
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