Visualizing Data using t-SNE An Intuitive Introduction

Simon Carbonnelle

Université Catholique de Louvain, ICTEAM 12th of May, 2016 Visualization and Dimensionality Reduction

Intuition behind t-SNE

Visualizing representations

Visualization and Dimensionality Reduction

Intuition behind t-SNE

Visualizing representations

Visualization is key to understand data easily.

Data of house areas in $\ensuremath{\mathsf{m}}^2$ and price in 1000s of euros.

Area	price	Area	price	Area	price
43.69	298.71	59.04	324.48	65.2	323.43
28.82	308.	90.13	373.8	92.38	379.56
102.22	426.68	59.24	325.71	77.86	337.77
36.32	307.53	94.89	396.69	73.48	349.15
48.35	315.4	27.72	313.53	52.19	311.86

Question

Is the relation linear?

Visualization is key to understand data easily.

Question

Is the relation linear?

Dimensionality Reduction is a helpful tool for visualization.

- Dimensionality reduction algorithms
 - Map high-dimensional data to a lower dimension
 - While preserving structure
- They are used for
 - Visualization
 - Performance
 - Curse of dimensionality
- A ton of algorithms exist
- t-SNE is specialised for visualization
- ... and has gained a lot of popularity

Dimensionality Reduction is a helpful tool for visualization.

- Dimensionality reduction algorithms
 - Map high-dimensional data to a lower dimension
 - While preserving structure
- They are used for
 - Visualization
 - Performance
 - Curse of dimensionality
- A ton of algorithms exist
- t-SNE is specialised for visualization
- ... and has gained a lot of popularity

Visualization and Dimensionality Reduction

Intuition behind t-SNE

Visualizing representations

Dimensionality Reduction techniques solve optimization problems.

$$\mathcal{X} = \{x_1, x_2, ..., x_n \in \mathbb{R}^h\} \to \mathcal{Y} = \{y_1, y_2, ..., y_n \in \mathbb{R}^l\}$$
$$\min_{\mathcal{Y}} C(\mathcal{X}, \mathcal{Y})$$

Three approaches for Dimensionality Reduction:

- Distance preservation
- Topology preservation
- Information preservation

Dimensionality Reduction techniques solve optimization problems.

$$\mathcal{X} = \{x_1, x_2, ..., x_n \in \mathbb{R}^h\} \to \mathcal{Y} = \{y_1, y_2, ..., y_n \in \mathbb{R}^l\}$$
$$\min_{\mathcal{Y}} C(\mathcal{X}, \mathcal{Y})$$

Three approaches for Dimensionality Reduction:

- Distance preservation
- Topology preservation
- Information preservation

t-SNE is distance-based but tends to preserve topology

SNE computes pair-wise similarities.

SNE converts euclidean distances to similarities, that can be interpreted as probabilities.

$$p_{j|i} = \frac{\exp(-\parallel x_i - x_j \parallel^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\parallel x_i - x_k \parallel^2 / 2\sigma_i^2)}$$
$$q_{j|i} = \frac{\exp(-\parallel y_i - y_j \parallel^2)}{\sum_{k \neq i} \exp(-\parallel y_i - y_k \parallel^2)}$$
$$p_{i|i} = 0, q_{i|i} = 0$$

Hence the name Stochastic Neighbor Embedding ...

Data in low-dimensional map

 $p_{j|i} \Leftrightarrow$

 $q_{j|i}$

 \Leftrightarrow

Similarity in high dimension

Data in low-dimensional map

Similarity in low dimension

 \Leftrightarrow

 \Leftrightarrow

Similarity in high dimension

Data in low-dimensional map

Similarity in low dimension

 \Leftrightarrow

 \Leftrightarrow

Similarity in high dimension

Data in low-dimensional map

Similarity in low dimension

 \Leftrightarrow

 \Leftrightarrow

Similarity in high dimension

Data in low-dimensional map

Similarity in low dimension

Kullback-Leiber Divergence measures the faithfulness with wich $q_{i|i}$ models $p_{i|i}$.

- ▶ $P_i = \{p_{1|i}, p_{2|i}, ..., p_{n|i}\}$ and $Q_i = \{q_{1|i}, q_{2|i}, ..., q_{n|i}\}$ are the distributions on the neighbors of datapoint *i*.
- ► Kullback-Leiber Divergence (KL) compares two distributions.

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

- KL divergence is asymmetric
- KL divergence is always positive.
- We have our minimization problem: $\min_{\mathcal{Y}} C(\mathcal{X}, \mathcal{Y})$

$$p_{j|i} = \frac{\exp(-\parallel x_i - x_j \parallel^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\parallel x_i - x_k \parallel^2 / 2\sigma_i^2)} \ , \ q_{j|i} = \frac{\exp(-\parallel y_i - y_j \parallel^2)}{\sum_{k \neq i} \exp(-\parallel y_i - y_k \parallel^2)}$$

- 1. Why radial basis function (exponential)?
- 2. Why probabilities?
- **3**. How do you choose σ_i ?

$$p_{j|i} = \frac{\exp(-\parallel x_i - x_j \parallel^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\parallel x_i - x_k \parallel^2 / 2\sigma_i^2)} \ , \ q_{j|i} = \frac{\exp(-\parallel y_i - y_j \parallel^2)}{\sum_{k \neq i} \exp(-\parallel y_i - y_k \parallel^2)}$$

1. Why radial basis function (exponential)?

Similarity in high dimension

Focus on local geometry.

This is why t-SNE can be interpreted as topology-based

$$p_{j|i} = \frac{\exp(-\parallel x_i - x_j \parallel^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\parallel x_i - x_k \parallel^2 / 2\sigma_i^2)} , \ q_{j|i} = \frac{\exp(-\parallel y_i - y_j \parallel^2)}{\sum_{k \neq i} \exp(-\parallel y_i - y_k \parallel^2)}$$

- 1. Why radial basis function (exponential)?
- 2. Why probabilities?

Small distance does not mean proximity on manifold.

Probabilities are appropriate to model this uncertainty

$$p_{j|i} = \frac{\exp(-\parallel x_i - x_j \parallel^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\parallel x_i - x_k \parallel^2 / 2\sigma_i^2)} \ , \ q_{j|i} = \frac{\exp(-\parallel y_i - y_j \parallel^2)}{\sum_{k \neq i} \exp(-\parallel y_i - y_k \parallel^2)}$$

- 1. Why radial basis function (exponential)?
- 2. Why probabilities?
- 3. How do you choose σ_i ?

The entropy of P_i increases with σ_i .

Entropy

$$H(P) = -\sum_i p_i \log_2 p_i$$

Perplexity, a smooth measure of the # of neighbors.

Entropy of 1.055 Perplexity of 2.078

Entropy of 3.800 Perplexity of 13.929

From SNE to t-SNE.

\Rightarrow Symmetric SNE \Rightarrow t-SNE

Modelisation:

SNE

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}$$
$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

Cost Function:

 $C = \sum_{i} KL(P_i || Q_i)$

Derivatives:

 $\frac{dC}{dy_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$

From SNE to t-SNE.

 \Rightarrow

SNE

Modelisation:

 $p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}$ $q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$

Cost Function:

 $C = \sum_{i} KL(P_i || Q_i)$

Derivatives:

 $\frac{dC}{dy_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$

Symmetric SNE \Rightarrow t-SNE

Modelisation:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$
$$q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq l} \exp(-\|y_k - y_l\|^2)}$$

Cost Function:

C = KL(P||Q)

Derivatives:

 $rac{dC}{dy_i} = 4\sum_j (p_{ij} - q_{ij})(y_i - y_j)$

 Faster
Computation

From SNE to t-SNE.

SNE

Modelisation:

 $p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$ $q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$

Cost Function:

 $C = \sum_{i} KL(P_i || Q_i)$

Derivatives:

 $\frac{dC}{dv} = 2\sum_{i} (p_{i|i} - q_{i|i} + p_{i|i} - q_{i|i})(y_{i} - y_{i})$

Symmetric SNE \Rightarrow t-SNE \Rightarrow

Modelisation:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$
$$q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq l} \exp(-\|y_k - y_l\|^2)}$$

Cost Function: C = KL(P||Q)

Derivatives: $\frac{dC}{dy_i} = 4\sum_i (p_{ij} - q_{ij})(y_i - y_j)$

> Faster Computation

Modelisation:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}}$$

Cost Function: C = KL(P||Q)

Derivatives: $\frac{dC}{dv} = 4 \sum_{i} (p_{ii} - q_{ii})(y_i - y_i)(1 + ||y_i - y_i||^2)^{-1}$

- Even Faster Computation
- Better **Behaviour**

The "Crowding problem"

There is much more space in high dimensions.

Mismatched Tails can Compensate for Mismatched Dimensionalities

Student-t distribution has heavier tails.

Last but not least: Optimization

$$\min_{\mathcal{Y}} C(\mathcal{X}, \mathcal{Y})$$
$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Non-convex

Gradient descent + Momentum + Adaptive learning rate

$$\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta(t) \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) (\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)})$$

Two tricks:

- Early Compression
- Early Exaggeration
- Illustration Colah's blog

Visualization and Dimensionality Reduction

Intuition behind t-SNE

Visualizing representations

Mapping raw data to distributed representations.

- Feature engineering is often laborious.
- New tendency is to automatically learn adequate features or representations.
- Ultimate goal: enable AI to extract useful features from raw sensory data.

t-SNE can be used to make sense of the learned representations!

Using t-SNE to explore a Word embedding.

- System outputs 1 if central word is in right context, 0 otherwise.
- Algorithms learns representation and classification simultaneously.

From Machine Learning to Machine Reasoning, L. Bottou (2011)

Goal

Representation captures syntactic and semantic similarity.

Using t-SNE to explore a Word embedding.

http://colah.github.io/

Explore a Wikipedia article embedding.

http://colah.github.io/

Exploring game state representations.

Google Deepmind plays Atari games.

Playing Atari with deep reinforcement learning, V. Mnih et Al.

Goal

Learning to play Space Invaders from score feedback and raw pixel values.

Exploring game state representations.

Google Deepmind plays Atari games.

- A representation is learned with a convolutional neural network
- From $84 \times 84 \times 4 = 28.224$ pixel values to 512 neurons.
- Predicts expected score if a certain action is taken.

Human-level control through deep reinforcement learning, V. Mnih et Al. (Nature,2015)

Exploring game state representations.

Google Deepmind plays Atari games.

Human-level control through deep reinforcement learning, V. Mnih et Al. (Nature,2015)

Using t-SNE to explore image representations.

Classifying dogs and cats.

https://indico.io/blog/visualizing-with-t-sne/

Each data point is an image of a dog or a cat

Using t-SNE to explore image representations.

Classifying dogs and cats.

Representation

Convolutional net trained for Image Classification (1000 classes)

https://indico.io/blog/visualizing-with-t-sne/

Using t-SNE to explore image representations.

Classifying dogs and cats.

Representation

Convolutional net trained for Image Classification (1000 classes)

https://indico.io/blog/visualizing-with-t-sne/

Conclusion

- The t-SNE algorithm reduces dimensionality while preserving local similarity.
- ► The t-SNE algorithm has been build heuristically.
- t-SNE is commonly used to visualize representations.