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Background

Compressed Sensing (CS)

 Original signal: 𝐲 ∈ ℝ𝑁

 𝐾-sparse signal: 𝐬 ∈ ℝ𝑁

 𝐲 = Ψ𝐬

 𝐬 has at most 𝐾 non-zero elements

 Measurement matrix: Φ ∈ ℝ𝑀×𝑁

 𝐾 < 𝑀 ≪ 𝑁

𝐳 = Φ𝐲 + 𝐞

 Measurement vector: 𝐳 ∈ ℝ𝑀

 Measurement noise: 𝐞 ∈ ℝ𝑀
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One possibility to recover 𝐲
Φ ~ 𝑖. 𝑖. 𝑑 Gaussian 

𝑀 = 4𝐾 log
𝑁

𝐾



Background

Compressed Sensing (CS)

 Sparse Signals

 Structured-Sparse Signals
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Background

Compressed Sensing (CS)
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𝐾-sparse signals comprise a particular set of 𝐾-dim subspaces

A 𝐾-sparse signal model comprises a particular (reduced) set of 𝐾-dim subspaces

union of 𝐾-dimensional subspaces



Background

Compressed Sensing (CS) [4, 5]
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Background

Video compressive sensing

 𝐲𝑡: the image of a scene at time 𝑡

 𝐘 = 𝐲1:𝑇 = 𝐲1, ⋯ , 𝐲𝑇 : video of the scene from time 1 to 𝑇

1. Single Pixel Camera (SPC)

 Duarte et al, 2008

2. Programmable Pixel Camera (P2C)

 Hitomi et al, 2011

 Reddy et al, 2011

 Veeraraghavan et al, 2011
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Goal: to recover 𝐲1:𝑇 given 𝐳1:𝑇
𝐳𝑡 = Φ𝑡𝐲𝑡



Background

Linear Dynamical System (LDS)

 Dynamical system: Change of some variables (state variables)

 Continuous vs Discrete

 Linear vs Non-linear

𝑡 ∈ ℝ: time

𝐱 ∈ ℝ𝑑: state vector (variables)

𝐮 ∈ ℝ𝑚: input vector

𝐲 ∈ ℝ𝑁: observation (output) vector ≠ measurement vector 

𝐀 ∈ ℝ𝑑×𝑑: state transition (dynamic) matrix

𝐁 ∈ ℝ𝑑×𝑚: input matrix

𝐂 ∈ ℝ𝑁×𝑑: observation (output or sensor) matrix

𝐃 ∈ ℝ𝑁×𝑚: feed-through matrix
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Discrete-time LDS:

𝐱𝑡+1 = 𝐀𝑡𝐱𝑡 + 𝐁𝑡𝐮𝑡
𝐲𝑡 = 𝐂𝑡𝐱𝑡 + 𝐃𝑡𝐮𝑡

TI autonomous discrete-time LDS:

𝐱𝑡+1 = 𝐀𝐱𝑡
𝐲𝑡 = 𝐂𝐱𝑡

LDS (𝐀, 𝐂, 𝐱) ≡ LDS (𝐋−1𝐀𝐋, 𝐂𝐋, 𝐋−1𝐱) 

For any invertible matrix 𝐋 ∈ ℝ𝒅×𝒅

Ambiguity !!!



Background

Linear Dynamical System (LDS)

 A matrix 𝐇 is called Hankel matrix if the entries on the anti-diagonals 

be the same, i.e.  𝐻𝑖,𝑗 = 𝐻𝑖−1,𝑗+1
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Given 𝐡 ∈ ℝ𝑁 → build 𝐇 ∈ ℝ𝐿×𝐾

Hankel matrix

𝐇 =

ℎ1 ℎ2
ℎ2 ℎ3

⋯
⋯

ℎ𝐾
ℎ𝐾+1

⋮ ⋮ ⋱ ⋮
ℎ𝐿 ℎ𝐿+1 ⋯ ℎ𝑁

𝐾 = 𝑁 − 𝐿 + 1

Given 𝐘 = 𝐲1:𝑇 ∈ ℝ𝑁×𝑇 → build 𝐇 ∈ ℝ𝐿𝑁×𝐾

Block-Hankel matrix

𝐇 =

𝐲1 𝐲2
𝐲2 𝐲3

⋯
⋯

𝐲𝐾
𝐲𝐾+1

⋮ ⋮ ⋱ ⋮
𝐲𝐿 𝐲𝐿+1 ⋯ 𝐲𝑇

𝐾 = 𝑇 − 𝐿 + 1



Background

Linear Dynamical System (LDS)
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𝐱𝑡+1 = 𝐀𝐱𝑡
↓

𝐱1 = 𝐱1
𝐱2 = 𝐀𝐱1

⋮
𝐱𝐾 = 𝐀𝐾−1𝐱1

𝐲𝑡 = 𝐂𝐱𝑡
↓

𝐲1 = 𝐂𝐱1
𝐲2 = 𝐂𝐱2 = 𝐂𝐀𝐱1

⋮
𝐲𝐿 = 𝐂𝐱𝐿 = 𝑪𝐀𝐿−1𝐱1

𝐎 ∈ ℝ𝐿𝑁×𝑑: Observability 

matrix

𝐂(𝐱) ∈ ℝ𝑑×𝐾: Controllability 

matrix

LDS (𝐀, 𝐂, 𝐱) ≡ LDS (𝐋−1𝐀𝐋, 𝐂𝐋, 𝐋−1𝐱) 

For any invertible matrix 𝐋 ∈ ℝ𝒅×𝒅



Background

LDS model for video sequences

 Challenges for video sequences:

 Ephemeral nature of videos

 High-dimensional signals

Few frames

Six basis frames
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All frames can be estimated using linear combinations of SIX images 
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CS-LDS Architecture

 We seek to recovery 𝐂 and 𝐱1:𝑇, given compressive 

measurements of the form 

𝐳𝑡 = Φ𝑡𝐲𝑡 = Φt𝐂𝐱𝑡
 𝐳𝑡 ∈ ℝ𝑀, Φ𝑡 ∈ ℝ𝑀×𝑁

 Bilinear unknowns → non-convex optimization problem
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𝐆𝐨𝐚𝐥: to build a CS framework, implementable on the SPC, for videos that are modeled as LDS.

Authors: A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, 2013



CS-LDS Architecture
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𝑁

𝑀
= 20, SNR: 25.81 dB

𝑁

𝑀
= 50, SNR: 24.09 dB



CS-LDS Architecture

1. State sequence estimation:
1. Build Hankel Matrix

2. Compute SVD

3. Compute estimated state sequences
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Given  𝐙 =  𝐳1:𝑇
↓

𝐇 =

 𝐳1  𝐳2
 𝐳2  𝐳3

⋯
⋯

 𝐳𝑇−𝐿+1
 𝐳𝑇−𝐿

⋮ ⋮ ⋱ ⋮
 𝐳𝐿  𝐳𝐿+1 ⋯  𝐳𝑇

↓
𝐇 = 𝐔𝑑𝐒𝑑𝐕𝑑

𝑇

↓
 𝐗 =  𝐱1:𝑇−𝐿+1 = 𝐒𝑑𝐕𝑑

𝑇



CS-LDS Architecture

2. Observation matrix estimation:
 𝐂 is time-invariant

 Given 𝐙 and  𝐗 , recover 𝐂

 Ψ is sparsifying basis for the columns of 𝐂
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Estimating the state sequence
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QS#1: What are the sufficient conditions for reliable estimation?

Definition: (Observability of an LDS) An LDS is observable if the current state can be 

estimated from a finite number of observations (for any possible state sequence).

Lemma: Observable LDS(𝐀, 𝐂) ⇔ the observability matrix 𝐎(𝐀, 𝐂) is full rank.

Remark: 𝑁 ≫ 𝑑 → LDS(𝐀, 𝐂) is observable with high probability

Lemma: for 𝑁 > 𝑑 , the LDS(𝐀,  Φ𝐂) is observable with high probability, if

•  𝑀 ≥ 𝑑
• Entries of  Φ are i.i.d samples of a sub-Gaussian distribution.

Sum up: Then we can estimate state sequences by factorizing the block-Hankel matrix.



Estimating the state sequence

20/30Compressive acquisition of  linear dynamical systems

QS#2: How about  𝑀 = 1 ? (one common measurement for each video sequence)

Theorem:  𝑀 = 1 and the elements of  Φ ∈ ℝ1×𝑁 be i.i.d from a sub-Gaussian 

distribution. With high probability 𝐎(𝐀,Φ𝐂) is full rank if
• The state transition matrix is diagonalizable,

• Its eigenvalues and eigenvectors are unique.

Matrix completion: min rank (𝐇( 𝐳𝑖)) s. t. 𝑖 ∈ ℐ
• Non-convex

QS#3: How about  𝑀 < 1 ? (missing measurements in some time instants)
• We obtain common measurements at some time instants ℐ ⊂ {1,⋯ , 𝑇}
• We have knowledge of  𝐳𝑖 , 𝑖 ∈ ℐ
• Incomplete knowledge of the block-Hankel matrix

Solution: (Nuclear norm) min 𝐇  𝐳𝑖 ∗ s. t. 𝑖 ∈ ℐ



Estimating the state sequence

Accuracy of state sequence estimation from common measurements

 𝑇 = 500, 𝑑 = 10

 Reconstruction SNR =
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Frobenius norm
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Estimating the observation matrix

 Images are sparse in some domains like Wavelet and DCT.

 Smooth changes in sequential frames

 The motion is spatially correlated.

 The supports of frames are highly overlapping.

 The columns of 𝐂 captures dominant motion patterns.

 𝐂 can be interpreted as a basis for the frames of the video.

 The columns of 𝐂 are sparse in the same domain.

 Insufficient for recovering 𝐂
  𝐱𝑡 ≈ 𝐋−1𝐱𝑡
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LDS (𝐀, 𝐂, 𝐱) ≡ LDS (𝐋−1𝐀𝐋, 𝐂𝐋, 𝐋−1𝐱) 

For any invertible matrix 𝐋 ∈ ℝ𝒅×𝒅



Estimating the observation matrix

 suppose 𝐂 is canonical sparse: Ψ = 𝐈 (wlog)

 Worst case: disjoint sparsity pattern

 Best case: same sparsity pattern

 Recovering 𝐂 using column group sparsity

 Solver: Model-based CoSaMP

 Value of  𝑀:
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=

𝐂 𝐋 𝐂𝐋

=



Estimating the observation matrix

Model-based CoSaMP
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Group sparsity

2



Estimating the observation matrix
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Ground truth

Oracle LDS: 24.97 dB

CS-LDS: 22.08 dB

Frame-to-Frame CS: 11.75 dB

Oracle LDS:

No CS (Nyquist sampling) + 

knowledge of 𝑑

𝑁

𝑀
= 234 for all methods

Sparsity: DCT, Wavelet 

Meas.: Noiselet, Gaussian
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Conclusion

 Not efficient to use conventional CS for video sequences

 Ephemeral nature

 High-dimensional

 Model video sequences as

 Low-dimensional dynamic parameters (the state sequences)

 High-dimensional static parameters (the observation matrix)

 Solution included

 SVD

 Convex optimization
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Thanks for Your Attention.

Any Question? 
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