
Compressive acquisition of linear 

dynamical systems

Amirafshar Moshtaghpour

May 2015



Outline

 Background

 CS-LDS Architecture

 Estimating the state sequence

 Estimating the observation matrix

 Conclusion

2/30Compressive acquisition of  linear dynamical systems



Outline

 Background

 CS-LDS Architecture

 Estimating the state sequence

 Estimating the observation matrix

 Conclusion

3/30Compressive acquisition of  linear dynamical systems



Background

Compressed Sensing (CS)

 Original signal: 𝐲 ∈ ℝ𝑁

 𝐾-sparse signal: 𝐬 ∈ ℝ𝑁

 𝐲 = Ψ𝐬

 𝐬 has at most 𝐾 non-zero elements

 Measurement matrix: Φ ∈ ℝ𝑀×𝑁

 𝐾 < 𝑀 ≪ 𝑁

𝐳 = Φ𝐲 + 𝐞

 Measurement vector: 𝐳 ∈ ℝ𝑀

 Measurement noise: 𝐞 ∈ ℝ𝑀
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One possibility to recover 𝐲
Φ ~ 𝑖. 𝑖. 𝑑 Gaussian 

𝑀 = 4𝐾 log
𝑁

𝐾



Background

Compressed Sensing (CS)

 Sparse Signals

 Structured-Sparse Signals
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Background

Compressed Sensing (CS)
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𝐾-sparse signals comprise a particular set of 𝐾-dim subspaces

A 𝐾-sparse signal model comprises a particular (reduced) set of 𝐾-dim subspaces

union of 𝐾-dimensional subspaces



Background

Compressed Sensing (CS) [4, 5]

7/30Compressive acquisition of  linear dynamical systems



Background

Video compressive sensing

 𝐲𝑡: the image of a scene at time 𝑡

 𝐘 = 𝐲1:𝑇 = 𝐲1, ⋯ , 𝐲𝑇 : video of the scene from time 1 to 𝑇

1. Single Pixel Camera (SPC)

 Duarte et al, 2008

2. Programmable Pixel Camera (P2C)

 Hitomi et al, 2011

 Reddy et al, 2011

 Veeraraghavan et al, 2011
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Goal: to recover 𝐲1:𝑇 given 𝐳1:𝑇
𝐳𝑡 = Φ𝑡𝐲𝑡



Background

Linear Dynamical System (LDS)

 Dynamical system: Change of some variables (state variables)

 Continuous vs Discrete

 Linear vs Non-linear

𝑡 ∈ ℝ: time

𝐱 ∈ ℝ𝑑: state vector (variables)

𝐮 ∈ ℝ𝑚: input vector

𝐲 ∈ ℝ𝑁: observation (output) vector ≠ measurement vector 

𝐀 ∈ ℝ𝑑×𝑑: state transition (dynamic) matrix

𝐁 ∈ ℝ𝑑×𝑚: input matrix

𝐂 ∈ ℝ𝑁×𝑑: observation (output or sensor) matrix

𝐃 ∈ ℝ𝑁×𝑚: feed-through matrix
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Discrete-time LDS:

𝐱𝑡+1 = 𝐀𝑡𝐱𝑡 + 𝐁𝑡𝐮𝑡
𝐲𝑡 = 𝐂𝑡𝐱𝑡 + 𝐃𝑡𝐮𝑡

TI autonomous discrete-time LDS:

𝐱𝑡+1 = 𝐀𝐱𝑡
𝐲𝑡 = 𝐂𝐱𝑡

LDS (𝐀, 𝐂, 𝐱) ≡ LDS (𝐋−1𝐀𝐋, 𝐂𝐋, 𝐋−1𝐱) 

For any invertible matrix 𝐋 ∈ ℝ𝒅×𝒅

Ambiguity !!!



Background

Linear Dynamical System (LDS)

 A matrix 𝐇 is called Hankel matrix if the entries on the anti-diagonals 

be the same, i.e.  𝐻𝑖,𝑗 = 𝐻𝑖−1,𝑗+1
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Given 𝐡 ∈ ℝ𝑁 → build 𝐇 ∈ ℝ𝐿×𝐾

Hankel matrix

𝐇 =

ℎ1 ℎ2
ℎ2 ℎ3

⋯
⋯

ℎ𝐾
ℎ𝐾+1

⋮ ⋮ ⋱ ⋮
ℎ𝐿 ℎ𝐿+1 ⋯ ℎ𝑁

𝐾 = 𝑁 − 𝐿 + 1

Given 𝐘 = 𝐲1:𝑇 ∈ ℝ𝑁×𝑇 → build 𝐇 ∈ ℝ𝐿𝑁×𝐾

Block-Hankel matrix

𝐇 =

𝐲1 𝐲2
𝐲2 𝐲3

⋯
⋯

𝐲𝐾
𝐲𝐾+1

⋮ ⋮ ⋱ ⋮
𝐲𝐿 𝐲𝐿+1 ⋯ 𝐲𝑇

𝐾 = 𝑇 − 𝐿 + 1



Background

Linear Dynamical System (LDS)
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𝐱𝑡+1 = 𝐀𝐱𝑡
↓

𝐱1 = 𝐱1
𝐱2 = 𝐀𝐱1

⋮
𝐱𝐾 = 𝐀𝐾−1𝐱1

𝐲𝑡 = 𝐂𝐱𝑡
↓

𝐲1 = 𝐂𝐱1
𝐲2 = 𝐂𝐱2 = 𝐂𝐀𝐱1

⋮
𝐲𝐿 = 𝐂𝐱𝐿 = 𝑪𝐀𝐿−1𝐱1

𝐎 ∈ ℝ𝐿𝑁×𝑑: Observability 

matrix

𝐂(𝐱) ∈ ℝ𝑑×𝐾: Controllability 

matrix

LDS (𝐀, 𝐂, 𝐱) ≡ LDS (𝐋−1𝐀𝐋, 𝐂𝐋, 𝐋−1𝐱) 

For any invertible matrix 𝐋 ∈ ℝ𝒅×𝒅



Background

LDS model for video sequences

 Challenges for video sequences:

 Ephemeral nature of videos

 High-dimensional signals

Few frames

Six basis frames
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All frames can be estimated using linear combinations of SIX images 
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CS-LDS Architecture

 We seek to recovery 𝐂 and 𝐱1:𝑇, given compressive 

measurements of the form 

𝐳𝑡 = Φ𝑡𝐲𝑡 = Φt𝐂𝐱𝑡
 𝐳𝑡 ∈ ℝ𝑀, Φ𝑡 ∈ ℝ𝑀×𝑁

 Bilinear unknowns → non-convex optimization problem
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𝐆𝐨𝐚𝐥: to build a CS framework, implementable on the SPC, for videos that are modeled as LDS.

Authors: A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, 2013



CS-LDS Architecture
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𝑁

𝑀
= 20, SNR: 25.81 dB

𝑁

𝑀
= 50, SNR: 24.09 dB



CS-LDS Architecture

1. State sequence estimation:
1. Build Hankel Matrix

2. Compute SVD

3. Compute estimated state sequences
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Given  𝐙 =  𝐳1:𝑇
↓

𝐇 =

 𝐳1  𝐳2
 𝐳2  𝐳3

⋯
⋯

 𝐳𝑇−𝐿+1
 𝐳𝑇−𝐿

⋮ ⋮ ⋱ ⋮
 𝐳𝐿  𝐳𝐿+1 ⋯  𝐳𝑇

↓
𝐇 = 𝐔𝑑𝐒𝑑𝐕𝑑

𝑇

↓
 𝐗 =  𝐱1:𝑇−𝐿+1 = 𝐒𝑑𝐕𝑑

𝑇



CS-LDS Architecture

2. Observation matrix estimation:
 𝐂 is time-invariant

 Given 𝐙 and  𝐗 , recover 𝐂

 Ψ is sparsifying basis for the columns of 𝐂
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Estimating the state sequence
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QS#1: What are the sufficient conditions for reliable estimation?

Definition: (Observability of an LDS) An LDS is observable if the current state can be 

estimated from a finite number of observations (for any possible state sequence).

Lemma: Observable LDS(𝐀, 𝐂) ⇔ the observability matrix 𝐎(𝐀, 𝐂) is full rank.

Remark: 𝑁 ≫ 𝑑 → LDS(𝐀, 𝐂) is observable with high probability

Lemma: for 𝑁 > 𝑑 , the LDS(𝐀,  Φ𝐂) is observable with high probability, if

•  𝑀 ≥ 𝑑
• Entries of  Φ are i.i.d samples of a sub-Gaussian distribution.

Sum up: Then we can estimate state sequences by factorizing the block-Hankel matrix.



Estimating the state sequence
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QS#2: How about  𝑀 = 1 ? (one common measurement for each video sequence)

Theorem:  𝑀 = 1 and the elements of  Φ ∈ ℝ1×𝑁 be i.i.d from a sub-Gaussian 

distribution. With high probability 𝐎(𝐀,Φ𝐂) is full rank if
• The state transition matrix is diagonalizable,

• Its eigenvalues and eigenvectors are unique.

Matrix completion: min rank (𝐇( 𝐳𝑖)) s. t. 𝑖 ∈ ℐ
• Non-convex

QS#3: How about  𝑀 < 1 ? (missing measurements in some time instants)
• We obtain common measurements at some time instants ℐ ⊂ {1,⋯ , 𝑇}
• We have knowledge of  𝐳𝑖 , 𝑖 ∈ ℐ
• Incomplete knowledge of the block-Hankel matrix

Solution: (Nuclear norm) min 𝐇  𝐳𝑖 ∗ s. t. 𝑖 ∈ ℐ



Estimating the state sequence

Accuracy of state sequence estimation from common measurements

 𝑇 = 500, 𝑑 = 10

 Reconstruction SNR =
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Frobenius norm
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Estimating the observation matrix

 Images are sparse in some domains like Wavelet and DCT.

 Smooth changes in sequential frames

 The motion is spatially correlated.

 The supports of frames are highly overlapping.

 The columns of 𝐂 captures dominant motion patterns.

 𝐂 can be interpreted as a basis for the frames of the video.

 The columns of 𝐂 are sparse in the same domain.

 Insufficient for recovering 𝐂
  𝐱𝑡 ≈ 𝐋−1𝐱𝑡
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LDS (𝐀, 𝐂, 𝐱) ≡ LDS (𝐋−1𝐀𝐋, 𝐂𝐋, 𝐋−1𝐱) 

For any invertible matrix 𝐋 ∈ ℝ𝒅×𝒅



Estimating the observation matrix

 suppose 𝐂 is canonical sparse: Ψ = 𝐈 (wlog)

 Worst case: disjoint sparsity pattern

 Best case: same sparsity pattern

 Recovering 𝐂 using column group sparsity

 Solver: Model-based CoSaMP

 Value of  𝑀:
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=

𝐂 𝐋 𝐂𝐋

=



Estimating the observation matrix

Model-based CoSaMP
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Group sparsity

2



Estimating the observation matrix
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Ground truth

Oracle LDS: 24.97 dB

CS-LDS: 22.08 dB

Frame-to-Frame CS: 11.75 dB

Oracle LDS:

No CS (Nyquist sampling) + 

knowledge of 𝑑

𝑁

𝑀
= 234 for all methods

Sparsity: DCT, Wavelet 

Meas.: Noiselet, Gaussian
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Conclusion

 Not efficient to use conventional CS for video sequences

 Ephemeral nature

 High-dimensional

 Model video sequences as

 Low-dimensional dynamic parameters (the state sequences)

 High-dimensional static parameters (the observation matrix)

 Solution included

 SVD

 Convex optimization
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Thanks for Your Attention.

Any Question? 
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