Compressive acquisition of linear dynamical systems

Amirafshar Moshtaghpour

May 2015

- Background
- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix
- Conclusion

Background

- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix

Background

Compressed Sensing (CS)

- Original signal: $\mathbf{y} \in \mathbb{R}^N$
- *K*-sparse signal: $\mathbf{s} \in \mathbb{R}^N$
 - $\Box \quad \mathbf{y} = \Psi \mathbf{s}$
 - **s** has at most K non-zero elements
- Measurement matrix: $\Phi \in \mathbb{R}^{M \times N}$
 - $\square \quad K < M \ll N$

$$\mathbf{z} = \Phi \mathbf{y} + \mathbf{e}$$

- Measurement vector: $\mathbf{z} \in \mathbb{R}^M$
- Measurement noise: $\mathbf{e} \in \mathbb{R}^M$

One possibility to recover **y** $\Phi \sim i. i. d$ Gaussian $M = 4K \log \frac{N}{K}$

Background

Compressed Sensing (CS)

- Sparse Signals
- Structured-Sparse Signals

Compressed Sensing (CS)

A K-sparse signal model comprises a particular (reduced) set of K-dim subspaces

Compressed Sensing (CS) [4, 5]

Background

1.

2.

Video compressive sensing

• **y**_t: the image of a scene at time t

• $\mathbf{Y} = \mathbf{y}_{1:T} = [\mathbf{y}_1, \dots, \mathbf{y}_T]$: video of the scene from time 1 to T

Background

Linear Dynamical System (LDS)

- **Dynamical system:** Change of some variables (*state variables*)
 - **Continuous vs Discrete**
 - Linear vs Non-linear

Discrete-time LDS: $\mathbf{x}_{t+1} = \mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t$

 $\mathbf{y}_t = \mathbf{C}_t \mathbf{x}_t + \mathbf{D}_t \mathbf{u}_t$

 $t \in \mathbb{R}$: time

 $\mathbf{x} \in \mathbb{R}^d$: state vector (variables)

 $\mathbf{u} \in \mathbb{R}^m$: input vector

 $\mathbf{y} \in \mathbb{R}^N$: observation (output) vector \neq measurement vector

 $\mathbf{A} \in \mathbb{R}^{d \times d}$: state transition (dynamic) matrix

 $\mathbf{B} \in \mathbb{R}^{d \times m}$: input matrix

 $\mathbf{C} \in \mathbb{R}^{N \times d}$: observation (output or sensor) matrix

 $\mathbf{D} \in \mathbb{R}^{N \times m}$: feed-through matrix

TI autonomous discrete-time LDS: $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t$ $\mathbf{y}_t = \mathbf{C}\mathbf{x}_t$

Ambiguity !!!

LDS (**A**, **C**, **x**) \equiv LDS (**L**⁻¹**AL**, **CL**, **L**⁻¹**x**)

For any invertible matrix $\mathbf{L} \in \mathbb{R}^{d \times d}$

Background

Linear Dynamical System (LDS)

□ A matrix **H** is called *Hankel matrix* if the entries on the anti-diagonals be the same, i.e. $H_{i,j} = H_{i-1,j+1}$

Background

Background

LDS model for video sequences

- Challenges for video sequences:
 - Ephemeral nature of videos
 - High-dimensional signals

All frames can be estimated using linear combinations of SIX images

Background

CS-LDS Architecture

- Estimating the state sequence
- Estimating the observation matrix

Authors: A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, 2013

Goal: to build a CS framework, implementable on the SPC, for videos that are modeled as LDS.

We seek to recovery **C** and $\mathbf{x}_{1:T}$, given compressive measurements of the form

$$\mathbf{z}_t = \Phi_t \mathbf{y}_t = \Phi_t \mathbf{C} \mathbf{x}_t$$

- $\Box \quad \mathbf{z}_t \in \mathbb{R}^M, \Phi_t \in \mathbb{R}^{M imes N}$
- \Box Bilinear unknowns \rightarrow non-convex optimization problem

FIG. 2. Block diagram of the CS-LDS framework.

$$\frac{N}{M} = 20$$
, SNR: 25.81 dB

 $\frac{N}{M} = 50$, SNR: 24.09 dB

$$\mathbf{z}_{t} = \begin{bmatrix} \check{\mathbf{z}}_{t} \\ \tilde{\mathbf{z}}_{t} \end{bmatrix} = \begin{bmatrix} \check{\Phi} \\ \tilde{\Phi}_{t} \end{bmatrix} \mathbf{y}_{t}, \longrightarrow \begin{array}{l} \check{\mathbf{z}}_{t} = \check{\Phi} \mathbf{C} \mathbf{x}_{t}, \\ \tilde{\mathbf{z}}_{t} \in \mathbb{R}^{\check{M}} \\ \check{\mathbf{z}}_{t} \in \mathbb{R}^{\check{M}} \\ M = \check{M} + \check{M} \end{array}$$

$$\mathbf{1. \quad State \ sequence \ estimation:} \\ 1. \quad Build \ Hankel \ Matrix \\ 2. \quad Compute \ SVD \\ 3. \quad Compute \ estimated \ state \ sequences \end{array}$$

$$\begin{array}{l} \check{\mathbf{z}}_{t} = \check{\Phi} \mathbf{C} \mathbf{x}_{t}, \\ \widetilde{\mathbf{z}}_{t} = \tilde{\Phi}_{t} \mathbf{C} \mathbf{x}_{t} \\ \downarrow \\ \mathbf{u} = \begin{bmatrix} \check{\mathbf{z}}_{1} & \check{\mathbf{z}}_{2} & \cdots & \check{\mathbf{z}}_{T-L+1} \\ \check{\mathbf{z}}_{2} & \check{\mathbf{z}}_{3} & \cdots & \check{\mathbf{z}}_{T-L} \\ \vdots & \vdots & \ddots & \vdots \\ \check{\mathbf{z}}_{L} & \check{\mathbf{z}}_{L+1} & \cdots & \check{\mathbf{z}}_{T} \end{bmatrix} \\ \mathbf{H} = \begin{bmatrix} \check{\mathbf{z}}_{1} & \check{\mathbf{z}}_{2} & \cdots & \check{\mathbf{z}}_{T-L+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H} = \begin{bmatrix} \check{\mathbf{z}}_{1} & \check{\mathbf{z}}_{2} & \cdots & \check{\mathbf{z}}_{T-L+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H} = \mathbf{U}_{d} \mathbf{S}_{d} \mathbf{V}_{d}^{T} \\ \downarrow \\ \mathbf{X} = \hat{\mathbf{x}}_{1:T-L+1} = \mathbf{S}_{d} \mathbf{V}_{d}^{T} \end{array}$$

- 2. Observation matrix estimation:
 - **C** is time-invariant
 - $\hfill\square$ Given Z and \widehat{X} , recover C

$$\min_{\mathbf{c}_i} \sum_{i=1}^d \left\| \Psi^T \mathbf{c}_i \right\|_1 \quad \text{s.t} \quad \forall t, \|\mathbf{z}_t - \Phi_t \mathbf{C} \hat{\mathbf{x}}_t\|_2 \le \epsilon,$$

• Ψ is sparsifying basis for the columns of **C**

Background

CS-LDS Architecture

Estimating the state sequence

Estimating the observation matrix

Estimating the state sequence

QS#1: What are the sufficient conditions for reliable estimation?

Definition: (Observability of an LDS) An LDS is observable if the current state can be estimated from a finite number of observations (for any possible state sequence).

Lemma: Observable LDS(\mathbf{A}, \mathbf{C}) \Leftrightarrow the observability matrix $\mathbf{O}(\mathbf{A}, \mathbf{C})$ is full rank.

Remark: $N \gg d \rightarrow LDS(\mathbf{A}, \mathbf{C})$ is observable with high probability

Lemma: for N > d, the LDS(**A**, Φ **C**) is observable with high probability, if

- $\check{M} \ge d$
- Entries of $\check{\Phi}$ are i.i.d samples of a sub-Gaussian distribution.

Sum up: Then we can estimate state sequences by factorizing the block-Hankel matrix.

Estimating the state sequence

QS#2: How about $\check{M} = 1$? (one common measurement for each video sequence)

Theorem: $\check{M} = 1$ and the elements of $\check{\Phi} \in \mathbb{R}^{1 \times N}$ be i.i.d from a sub-Gaussian distribution. With high probability $\mathbf{O}(\mathbf{A}, \Phi \mathbf{C})$ is full rank if

- The state transition matrix is diagonalizable,
- Its eigenvalues and eigenvectors are unique.

QS#3: How about $\check{M} < 1$? (missing measurements in some time instants)

- We obtain common measurements at some time instants $\mathcal{I} \subset \{1, \dots, T\}$
- We have knowledge of $\check{\mathbf{z}}_i, i \in \mathcal{I}$
- Incomplete knowledge of the block-Hankel matrix

Matrix completion: min rank ($\mathbf{H}(\mathbf{\check{z}}_i)$) s.t. $i \in \mathcal{I}$

• Non-convex

Solution: (Nuclear norm) $\min \|\mathbf{H}(\mathbf{\check{z}}_i)\|_* \text{ s.t. } i \in \mathcal{I}$

Estimating the state sequence

Accuracy of state sequence estimation from common measurements

• T = 500, d = 10

• Reconstruction $SNR = 10 \log_{10}$

$$\left(\frac{\sum_{t=1}^{T} \|\mathbf{y}_t\|_2^2}{\sum_{t=1}^{T} \|\mathbf{y}_t - \widehat{\mathbf{y}}_t\|_2^2}\right)$$
Frobenius norm

Background

- CS-LDS Architecture
- Estimating the state sequence

Estimating the observation matrix

- Images are sparse in some domains like Wavelet and DCT.
- Smooth changes in sequential frames

d

- The motion is spatially correlated.
- The supports of frames are highly overlapping.
- **•** The columns of **C** captures dominant motion patterns.
- **C** can be interpreted as a basis for the frames of the video.
- \Box The columns of **C** are sparse in the same domain.

$$\min_{\mathbf{c}_i} \sum_{i=1}^{\infty} \left\| \Psi^T \mathbf{c}_i \right\|_1 \quad \text{s.t} \quad \forall t, \left\| \mathbf{z}_t - \Phi_t \mathbf{C} \hat{\mathbf{x}}_t \right\|_2 \le \epsilon,$$

□ Insufficient for recovering **C**

$$\hat{\mathbf{x}}_t \approx \mathbf{L}^{-1} \mathbf{x}_t$$

LDS (A, C, x) \equiv LDS (L⁻¹AL, CL, L⁻¹x)

For any invertible matrix $\mathbf{L} \in \mathbb{R}^{d \times d}$

- suppose **c** is canonical sparse: $\Psi = \mathbf{I}$ (wlog)
- *Worst case:* **disjoint** sparsity pattern
- Best case: same sparsity pattern
- Recovering **C** using column group sparsity

$$(P_{\ell_2-\ell_1}) \min \sum_{i=1}^N \|\mathbf{s}_i\|_2 \quad \text{s.t } C = \Psi S, \ \forall t, \|\mathbf{z}_t - \Phi_t C \hat{\mathbf{x}}_t\|_2 \leqslant \epsilon,$$

- Solver: Model-based CoSaMP
- Value of \widetilde{M} :

$$\widetilde{M}T = 4dK \log(N/K) \implies \widetilde{M} = 4\frac{dK}{T} \log(N/K)$$

Model-based CoSaMP

Algorithm 1: \hat{C} = Model-based CoSAMP ($\Psi, K, \mathbf{z}_t, \hat{\mathbf{x}}_t, \Phi_t, t = 1, \dots, T$)

Notation:

supp(vec; K) returns the support of K largest elements of vec

 $A_{\mid \Omega, \cdot}$ represents the submatrix of A with rows indexed by Ω and all columns.

 $A_{|\cdot,\Omega}$ represents the submatrix of A with columns indexed by Ω and all rows.

Ground truth

Oracle LDS: 24.97 dB

CS-LDS: 22.08 dB

Frame-to-Frame CS: 11.75 dB

 $\frac{N}{M} = 234$ for all methods

Oracle LDS: No CS (Nyquist sampling) + knowledge of *d*

Sparsity: DCT, Wavelet Meas.: Noiselet, Gaussian

Background

- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix

Conclusion

Conclusion

Not efficient to use conventional CS for video sequences

- Ephemeral nature
- High-dimensional
- Model video sequences as
 - Low-dimensional dynamic parameters (the state sequences)
 - High-dimensional static parameters (the observation matrix)
- Solution included
 - SVD
 - Convex optimization

Main References

[1] A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, "Compressive acquisition of linear dynamical systems," *SIAM Journal on Imaging Sciences 6*, No. 4, pp. 2109-2133, 2013.

[2] A. C. Sankaranarayanan, P. K. Turaga, K. Pavan, R. G. Baraniuk, and R. Chellappa, "Compressive acquisition of dynamic scenes," in *European Conference on Computer Vision*, Sep. 2010.

[3] [Online]: CS-LDS, <u>www.ece.rice.edu/~as48/research/cslds</u>.

[4] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, "Model-based compressive sensing," *IEEE Transactions on Information Theory*, Vol. 56, No. 4, pp. 1982-2001, 2010.

[5] D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," *Applied and Computational Harmonic Analysis*, Vol. 26, No. 23, pp. 301-323, 2009.

Thanks for Your Attention.

Any Question?