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Background

Compressed Sensing (CS)

i N
Original signal: y € R One possibility to recover y

K-sparse signal: s € RV ® ~ i.i.d Gaussian
N
M = 4K log;

o y=Ws
o s has at most K non-zero elements

Measurement matrix: @ € RMxN
0 K<MKN

Z=>dy+e

Measurement vector: z € RM
Measurement noise: e € RM
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Background

Compressed Sensing (CS)
Sparse Signals
Structured-Sparse Signals

ill --UMN.,“' i m
l |u||-\w|"“ .

| a S background subtracted image
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Background

Compressed Sensing (CS)

[ K -sparse signals comprise a particular set of K-dim subspaces

Isignalll, < K

ﬁ
union of K-dimensional subspaces

} “ RN

[A K-sparse signal model comprises a particular (reduced) set of K-dim subspaces }
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‘ Background

Compressed Sensing (CS) [4, 5]

[ a =Model-CoOSAMP(®, u, 5) ]4—{ a = (‘OSH}[P((I). u, S)]

Input: Sampling Matrix ®. measurement vector u. sparsity level s
Output: An s-sparse approximation a of the target signal
a’ < 0 Trivial initial approximation
V& u Current samples = input samples
k<0 [teration index
repeat
k—Fk+1
y < O*v Form signal proxy

[ Q « supp(M, (y,s)) }i{SZ - supp(yzg)] Identify large components
T + QUsupp(a1) Merge supports
by + ®Tu Signal estimation by least-square
b|re + 0

[ ak « M(b, s) ].7{ a® « b, ] Prune to obtain next approximation
v < u— da” Update current samples
until halting criterion true
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Background

Video compressive sensing .
y:. the image of a scene at time ¢ ol
Y =vy;.r = |y, -+, yrl: video of the scene fromtime 1to T

[ Goal: to recover y,.r given z;.¢ }
zy = iy

Single Pixel Camera (SPC)
o Duarte et al, 2008
Programmable Pixel Camera (P2C)

ng (offline
H H Y K- Ler
o Hitomi et al, 2011 e () Spas econauton
-
Training D \ Sparse representation: E = Da
data sel

o Reddyetal, 2011 =
(1) Coded sampling H Fm'a
o Veeraraghavan et al, 2011 e ER i il
- - /%
ll.nl.nuu n Coded exposure C \!J:d
scene: E sampling function: § image:
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Background

Linear Dynamical System (LDS)

Dynamical system: Change of some variables (state variables)
o Continuous vs Discrete
o Linear vs Non-linear

Discrete-time LDS: T1 autonomous discrete-time LDS:
Xt+1 = AtXt + Btut Xt+1 = Axt
ye = Cix¢ + Doy y: = Cx;
t € R: time
x € R¥: state vector (variables)
u € R™: input vector Ambiguity !
y € RN: observation (output) vector # measurement vector
A € R**4: state transition (dynamic) matrix LDS (A, C, x) = LDS (LAL, CL, L"'x)

B € R¥™: input matrix
C € RV*4: observation (output or sensor) matrix

_ For any invertible matrix L € R%#*4
D € RV*™: feed-through matrix
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Background

Linear Dynamical System (L DS)

o A matrix H is called Hankel matrix if the entries on the anti-diagonals
be the Same, .e. Hi,j = Hi—l,j+1

/Given h € RY - build H € RM*X \ ﬁi\/en Y=y, € R"T S buildH € RLNA

Hankel matrix Block-Hankel matrix
.|
h, hy hy 3
O L hicia "
hL hL+1 hN
K=N-L+1 o
\_ —L+ / H= Y2 Y3 - Vk+1
Yo Yi+1 - yr

e /
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Background

Linear Dynamical System (L DS)

_Yi Yo

H— yé ¥3

CA:L_']

Yo Yo+ o

Yi
yKJrl

~ 0(C, A)C(x),

H = UdeV;ﬁ";

—>

Yr |

CXl CXQ CX[\'
CAXl CAXQ CAX[\'
CA"'x; CA"'xy o CA"'xg|
/ LN Xxd - il
x<] | O€ER : Observability
matrix
C(x) € R**X: Controllability
matrix
o

)

O(C,A) = U,

[Xl ;-T—L+1] — Sde;

Xt+1 = AXy \
\)

X1 = Xq

X, = Ax4

XK == AK_1X1

N

-

y: = Cx; \
l

y1 = Cxy

yZ = CX2 = CAX]_

yL = CXL = CAL_1X1 /

LDS (A, C, x) = LDS (L™ !AL, CL, L~ 1x)

For any invertible matrix L € R4%4

Compressive acquisition of linear dynamical systems

11/30



I:I:ﬁI:I:Z:Ifr::ﬁ:jri:::f
Background _fﬁ:ﬁIﬁ:ﬁ:ﬁllﬁ::ﬁllﬁ:ﬁ:
%) 2l T ___l_____l_____
% 19 e et St te et St
> [Cooootiowcotioioiodioioio]
S S WO SO N
LDS model for video sequences 6 peed o  — T
Challenges for video sequences: 10———§————$———¢'————
o Ephemeral nature of videos R — T 3
a High-dimensional Signals (b) Top 20 singular values of the

data matrix

Few frames

Six basis frames
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‘ Outline
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= CS-LDS Architecture
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B Cstirnating the observatiorn rratrix
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CS-I.DS Architecture

Authors: A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, 2013

Goal: to build a CS framework, implementable on the SPC, for videos that are modeled as LDS.

We seek to recovery C and x,.7, given compressive
measurements of the form
Zy = Oy = PCxy
a0 z, € RM, @, € RM*N
o Bilinear unknowns — non-convex optimization problem

* )
Estimate state T > T 2 Vi
sequence -
yl:T Common (~ ) EI:T - f.
measurements ’ ?| Estimate observation C
Innovations EI) - > matrix
measurements ! ) Zyp

Fic. 2. Block diagram of the CS-LDS framework.
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‘ CS-I.DS Architecture

% — 20, SNR: 25.81 dB

N

i 50, SNR: 24.09 dB
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CS-1.DS Architecture

_Zt_ i ) | Zy = (I)CXta
Zi = |~ — | 5 Yi, — ~
Zi o z. — ©,Cx,
iat €E H%ijﬁf //////, ‘\\\\\\
7, € RM Given Zl =7
M=M+M (Zy  Zy; v Zr_p4q
T i.z i3 \Z/T.—L
State sequence estimation:
1. Build Hankel Matrix { :
>, Compute SVD H = Uldsdvd

3.

Compute estimated state sequences

.

—~ _ A _ T
X=X1.7-1+1 = S4V4

/
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16/30



CS-I.DS Architecture

Observation matrix estimation:
o C s time-invariant

a0 GivenZ and X, recover C
d

min E HKI!Tci
C;

=1

1 S.T \V/t, HZt — (I)tC)ACtH2 S €,

W is sparsifying basis for the columns of C
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‘ Outline

m Estirnating the observatiorn retrlx
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Estimating the state sequence

QS#1: What are the sufficient conditions for reliable estimation?

A /

4 )
Definition: (Observability of an LDS) An LDS is observable if the current state can be
estimated from a finite number of observations (for any possible state sequence).

o J
Lemma: Observable LDS(A, C) < the observability matrix O(A, C) is full rank.

[ Remark: N > d — LDS(A, C) is observable with high probability

- J

Lemma: for N > d , the LDS(A, ®C) is observable with high probability, if
- M>d
» Entries of ® are i.i.d samples of a sub-Gaussian distribution.

[Sum up: Then we can estimate state sequences by factorizing the block-Hankel matrix. }
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Estimating the state sequence

Ve

QS#2: How about M = 1 ? (one common measurement for each video sequence)

.

\\

-

-

(&

- - .. _ )
Theorem: M = 1 and the elements of ® € R**" be i.i.d from a sub-Gaussian
distribution. With high probability O(A, ®C) is full rank if
» The state transition matrix is diagonalizable,

\.* Its eigenvalues and eigenvectors are unique. .

_ . _ .. )
QS#3: How about M < 1 ? (missing measurements in some time instants)
* We obtain common measurements at some time instants J c {1,---,T}
* We have knowledge of Z;,i € 7
\.* Incomplete knowledge of the block-Hankel matrix /
<
Matrix completion: minrank (H(Z;)) s.t. i €7
* Non-convex
- J
.
Solution: (Nuclear norm)  min||H(Z,)||, s.t. i €7
J
Compressive acquisition of linear dynamical systems 20/30



Estimating the state sequence

Accuracy of state sequence estimation from common measurements
T =500,d =10

ZT—I HYtH% Frobenius norm
Reconstruction SNR = 10log,y | =7~
2=t Iyt — ¥ill3

70 —— 50 dB [
—-e--40 dB 6ok
20dB -
% ® —a-10 ClB_ -
= [E—— £ 50l
o4
& 5
% 50 %
g £ 40f
240 g
£ =
: % 30l
£ 30 | ::
S e =7 cmemmmmmmmeee | 53
8 6 * L ecmme—=—==lemmm é}
- 20F
201 ] 20
‘:.r
108 . . . . i 10t . . . . . | |
5 10 15 20 25 30 10 20 30 40 50 0 0 < >
Number of Measurements Missing Measurements in %
(a) M =1 (b) M <1
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‘ Outline

m Estirnating the state secuer
= Estimating the observatlon matrix

m Corclusior
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Estimating the observation matrix

Images are sparse in some domains like Wavelet and DCT.

Smooth changes in sequential frames

o The motion is spatially correlated.

The supports of frames are highly overlapping.

The columns of C captures dominant motion patterns.

C can be interpreted as a basis for the frames of the video.
The columns of C are sparse in the same domain.

d
. 17
min E H\IJ C,
C; 1

1=

O 0O O O

1 S.t Vtﬂ HZt — (I)tC)A(tHQ § €,

o Insufficient for recovering C LDS (A, C, x) = LDS (L™*AL, CL, L™ x)

R ~ L 1x,

For any invertible matrix L € R4*x4
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Estimating the observation matrix

suppose c is canonical sparse: ¥ = I (wlog)
Worst case: disjoint sparsity pattern

Best case: same sparsity pattern
Recovering C using column group sparsity

N
(Pry_v,) minz Isile st C=WS, Vt, |z — &:Cx¢|2 < e,
i=1

Solver: Model-based CoSaMP
Value of M:

I

MT = 4dK log(N/K) = M = 4%{ log(N/K)

ik R
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‘ Estimating the observation matrix

Algorithm 1: C' = Model-based CoSAMP (U, Kz, %, Dt =1,...,T)

Model-based CoSaMP

Group sparsity

Notation:

supp(vee; K') returns the support of K largest elements of vec
A represents the submatrix of A with rows indexed by () and all

columns.

A|. o represents the submatrix of A with columns indexed by (2 and all

TOWS.
Initialization

vt| @f — {I)le
Vv, — 0 RM
Qo < @

while (stopping conditions are not met) do

Compute signal proxy:
_ N Ty T
R=>,0{vXx
Compute energy in each row:

{

kelL,. Nr(k) = oo Bo(k,1) )

oupport dentification and merger: 2
() — Q4 | supp(r; 2K)

Least squares estimation:
Find A € RI***4 that minimizes Y, |z, — (0;). A%, [3
Bg. <« A, Bge. « 0

Pruning support:

kE llm':Nlub(k} - Zfilgz(k:i} ]

() — supp(b; K), So. < B, Sgc. <0
Form new estimate of C":

C «— TS
Update residue:

Vt, v «— 7y — 0; 5%,

Qoa < 2

end
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HEstimating the observation matrix

Ground truth | : I g r
A ML e
Oracle LDS: 24.97 dB ""-;I ! - f
. FrL
CS-LDS: 22.08 dB 'y \ﬂr L o ! r

Frame-to-Frame CS: 11.75 dB
% = 234 for all methods

" Ground truth 128 x 128 ('oinp 50x 19.8dB

p
Oracle LDS:
No CS (Nyquist sampling) +
Kknowledge of d

128 x 128 Comp20x 22.7dB 128 x 128 Comp 100x 153 dB

p
Sparsity: DCT, Wavelet

Meas.: Noiselet, Gaussian :
A Comp 100x  15.5dB
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‘ Outline
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Conclusion

Not efficient to use conventional CS for video sequences
o Ephemeral nature
o High-dimensional

Model video sequences as
o Low-dimensional dynamic parameters (the state sequences)
o High-dimensional static parameters (the observation matrix)

Solution included
o SVD
o Convex optimization
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Thanks for Your Attention.

Any Question?
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