4D signal processing for lung cancer treatment by radiotherapy

Nicolas Gallego-Ortiz

Respiratory motion

- Breath in, breath out
- What moves and how does it moves?

Kyriakou et al. Phys. Med. Biol. **56** (2011) 2999–3013

Treatment: patient setup critical

4D CT: four dimensional computed tomography

Agenda

- Why respiratory motion in RT?
- Imaging technologies
- Tumor and lungs motion modeling
 - Finite Element Method
 - Deformable Image Registration

Why study respiratory motion?

- Correct for image artefacts
- To reduce tumor position **uncertainty margins**

GTV Gross Tumor Volume CTV Clinical Target Volume ITV Internal Target Volume PTV Planning Target Volume OAR Organ At Risk

E.B. Podgorsak RADIATION ONCOLOGY PHYSICS. Vienna : International Atomic Energy Agency, 2005. Ch 7 p 220

Variations

Intra-fraction variations

- Short time changes in a regular respiratory pattern
- Coaching to keep respiration regular

Interfraction variations

- Day to day changes. Organ fillings, weight loss / gain etc. Changes in respiratory pattern from one day to the other
- Constraints to have real-time tumor tracking – Need to model

Agenda

- Why respiratory motion in RT?
- Imaging technologies
- Tumor and lungs motion modeling
 - Finite Element Method
 - Deformable Image Registration

Imaging technologies

- Computed tomography
- 4D Computed Tomography
- 4D Magnetic Resonance
- ... multimodality solutions with flouroscopy, Cone-beam CT.
- Optical surface scanning technologies

Concept of 4D CT

(3D + t) Computed
 Tomography

Low et al.: Breathing motion measurements Medical Physics, Vol. 30, No. 6, June 2003

A sagittal slice of a lung tumor in motion

Optical surface technologies

Agenda

- Why respiratory motion in RT?
- Imaging technologies
- Tumor and lungs motion modeling
 - Finite Element Method
 - Deformable Image Registration

Lung and tumor motion modeling

• Biophysical models

- Deformable registration (data-driven)
 - Internal deformations related to surface
 - Surface deformation -> motion field

Agenda

- Why respiratory motion in RT?
- Imaging technologies
- Tumor and lungs motion modeling

– Finite Element Method

– Deformable Image Registration

What is Finite Element Method?

- Numerical method
- Solve boundary problems
- Partial differential equations
- On a discrete finite element set (discretized solution domain)

Dynamic model: simplified geometry

Kyriakou et al. Phys. Med. Biol. **56** (2011) 2999–3013

 Finite element model: Rectangle driven by a piston. Sinusoidal displacement profile

Dynamic model:

Kyriakou et al. Phys. Med. Biol. **56** (2011) 2999–3013

lung material: hookean linear and viscoelastic

Table 1. Median values for the key parameters of the model.

ADINA (commercial software for Automatic Dynamic Incremental Nonlinear Analysis).

Dynamic model: Assessment: 4DCT data

Kyriakou et al. Phys. Med. Biol. **56** (2011) 2999–3013

Dynamic model: Parameters tunning

Kyriakou et al. Phys. Med. Biol. **56** (2011) 2999–3013

Agenda

- Why respiratory motion in RT?
- Imaging technologies
- Tumor and lungs motion modeling

 Finite Element Method
 - Deformable Image Registration

What is image registration?

http://www.itk.org/ItkSoftwareGuide.pdf

How does it work? Image Registration

http://www.itk.org/ItkSoftwareGuide.pdf

What is de difference between?

http://www.itk.org/ItkSoftwareGuide.pdf

Rigid Registration

Deformable Registration?

Surface Volume Model Deformable registration

Fayad et al. Med. Phys. 39 (6), June 2012

Principal Component Analysis Approximated relation surface volume

$$d_{j} = \begin{bmatrix} u_{1,1,j}, u_{1,2,j}, u_{1,3,j}, \dots, u_{M,3,j}, s_{1,j}, s_{2,j}, \dots, s_{N,j} \end{bmatrix}^{T}, \quad (4) \qquad u_{m,i,j} \qquad i \text{ th displacement of } Voxel m at time j$$

$$D = \begin{bmatrix} \tilde{d}1, \dots, \tilde{d}j, \dots, \tilde{d}J \end{bmatrix}, \qquad (5) \qquad s_{n,j} \qquad Displacement nth \\ Surrogate at time j \\ N = 1 \text{ amplitude} \\ N = 1 \text{ phase} \\ N = 2 \text{ ampl and phase} \\ N = 2 \text{ ampl and phase} \\ N = 10 \text{ (surface ROIs)}$$
Take the K first eigen vectors
$$d(t) \approx \bar{d} + \sum_{k=1}^{K} w_{k}(t)e_{k}. \qquad (8)$$

(8)

(9)

Fayad et al. Med. Phys. 39 (6), June 2012

 $E = [e_1, \dots, e_k]$ $\tilde{d} = [\tilde{u}, \tilde{s}]^T$

 $\tilde{d} \approx EW$,

 $\tilde{u} \approx E_u W$

 $\tilde{s} \approx E_s W$

Principal Component Analysis Approximated relation surface volume

$$d_{j} = \begin{bmatrix} u_{1,1,j}, u_{1,2,j}, u_{1,3,j}, ..., u_{M,3,j}, s_{1,}, s_{2,j}, ..., s_{N,j} \end{bmatrix}^{T}, (4) \qquad u_{m,i,j} \qquad ith displacement of Voxel m at time j$$

$$D = \begin{bmatrix} \tilde{d}1, ..., \tilde{d}j, ..., \tilde{d}J \end{bmatrix}, (5) \qquad Displacement nth \\ \stackrel{\text{Ime } j}{\tilde{u}} = E_{u}E_{s}^{-1}\tilde{s}(t) = B\tilde{s}(t), \qquad d_{e}^{\text{Ime } j} = B\tilde{s}(t), \qquad d_{e}^{I$$

 $\tilde{u}(t) = E_u E_s^{-1} \tilde{s}(t) = B \tilde{s}(t), \tag{11}$

Reconstructed volumes Fayad et al. Med. Phys. 39 (6), June 2012

Generated CT: SurfaceMapModel

Generated CT: AmpModel

Generated CT: AmpPhModel

Generated CT: PhModel

Pixel

J Schaerer et al. Phys. Med. Biol. **57** (2012) 357–373

Measuring respiratory patterns

Measuring respiratory patterns

J Schaerer et al. Phys. Med. Biol. **57** (2012) 357–373

Measuring respiratory patterns

J Schaerer et al. Phys. Med. Biol. **57** (2012) 357–373

J Schaerer et al. Phys. Med. Biol. **57** (2012) 357–373

Measuring respiratory patterns

J Schaerer et al. Phys. Med. Biol. **57** (2012) 357–373 Patient surface motion

Summary

- Modeling + Simulation
 - Very simplified model approaches real tumor trajectories
- Deformable registration (motion field)
 - Typical breathing cycle motion (4D CT data)
 - Given a surfaces -> reconstruct volumen
 - Sensing + registering surfaces -> extract external motion field

Discussion

- Still no evidence that monitoring skin thoracoabdominal area can improve tumor position estimation
 - Initial condition for tumor trajectories
 - Breaking correlation -> changes in respiratory pattern
 - Same tumor size and position DONT => same trajectory
- Will a model based on planning data hold for delivery fractions? (Time invariance)

Thank you! What is your opinion?

Lung cancer

- Mortality rates
- Categories
- Treatment options
- Radiotherapy
 - Margins

♀ death rates US data 1930-2007

CA: A Cancer Journal for Clinicians

Volume 62, Issue 1, pages 10-29, 4 JAN 2012

Year of Death

\checkmark death rates

US data 1930-2007

CA: A Cancer Journal for Clinicians Volume 62, Issue 1, pages 10-29, 4 JAN 2012

Two categories

- Small cell lung cancer (SCLC)
 15 20 % of lung cancers
 Agressive
- Non-small cell lung cancer (NSCLC)

Patient setup

- Registration
- Surface Matching

Margins

GTV Gross tumor Volume CTV Clinical Target Volume ITV Internal Target Volume PTV Planning Target Volume OAR Organ At Risk

<u>restart</u>

