
PET provides useful metabolic information

Widely used in
diagnosis
monitoring
follow-up of the patient



Accurate delineation of tumours is a challenging task

PET images suffer from two main limitations:
low spatial resolution
high level of multiplicative noise

We can act on two levels:
During the reconstruction phase:

During a post-processing phase:



Contribution of the work

Choice: inverse problem approach in a post-processing phase

Assumption: the noise after reconstruction is still multiplicative (Poisson
in first approximation)

The method will
be specific to the restoration of PET images;
introduce the total generalized variation (TGV) as a regularization
term;
take into account the Poisson statistics of the noise.
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Observations are a corrupted version of the reality

Forward model
Let

u0 ∈ RN be the original PET image;

K be a blur operator;

Nν be a noise corruption of parameter ν.

Observations z are associated with u0 through

z = Nν(K(u0)).

Assumptions:
PSF near the center of the field of view is uniform, Gaussian and
isotropic;
Noise follows a Poissonian distribution.
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Observations are a corrupted version of the reality

Forward model (with assumptions)
Let

u0 ∈ RN be the original PET image;

K be a linear and bounded blur operator ∈ RN×N ;

P be a Poisson noise with mean (Ku0).

Observations z are associated with u0 through

z = P(Ku0),

Two additional constraints specific to PET imaging:
Positivity: u0 � 0
Photometry invariance:

∑N
i=1(u0)i ≈

∑N
i=1 zi
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The problem of finding an estimator of u0 is ill-posed

Our goal is to find an estimator û0 of the original image u0
from observations z .

This problem is ill-posed due to
the noise;
the low-pass filter effect of the PSF;
etc.

⇒ need for a regularization



The assumption of piecewise smoothness by TGV

Let x ∈ RN .
Total variation used to promote piecewise constant images:

TV(x) = ‖∇x‖2,1

Total generalized variation of order 2 (Bredies 2010):

TGV2
α(x) = min

w∈RN×2
‖∇x −w‖2,1 + α‖ε(w)‖2,1,

with α ∈ R.

Original Noisy TV TGV
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The maximum a posteriori estimator is the best one
Bayesian approach

û0 = arg max
u∈RN

p(u|z)

= arg max
u∈RN

p(z |u)p(u) (Bayes)

= arg min
u∈RN

− log p(z |u) − log p(u)

Fidelity term

Regularization term

Data fidelity term for Poisson noise (Anthoine 2012):

− log p(z |u) =
∑N

i=1(Ku − z · f (Ku))i + r(z),



Constraints and prior are integrated to the MAP estimator

From
û0 = arg min

u∈RN
− log p(z |u)− log p(u),

we get the inverse problem formulation.

Inverse problem

ûλ = arg min
u∈RN ,

w∈RN×2

λ
∑N

i=1(Ku − z · f (Ku))i + ‖∇u − w‖2,1

+ α‖ε(w)‖2,1 + ıRN
+
(u) + ıC(u),

with f (t) = log t if t > 0 and 0 otherwise and λ > 0 is the regularization
parameter. Indicator functions are defined as

ıD(x) =

{
0 if x ∈ D
+∞ otherwise
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The Chambolle-Pock primal-dual algorithm

Chambolle-Pock (CP) primal-dual algorithm (Chambolle 2010)

Let L : X → Y be a linear continuous operator with a norm defined by
‖L‖2 = max{‖Lx‖2 | x ∈ X with ‖x‖2 ≤ 1} and G : X → [0,+∞[ and
F ? : Y → [0,+∞[ be proper, convex, and lower-semicontinuous functions.
The CP primal-dual algorithm is designed to solve the following saddle-point
problem

min
x∈X

max
y∈Y

〈Lx , y〉 − F ?(y) + G(x),

which is a primal-dual formulation of the primal problem min
x∈X

F (Lx) + G(x).



The choice of CP algorithm is adapted to the inverse formulation

Inverse problem

ûλ = arg min
u∈RN ,

w∈RN×2

λ
N∑

i=1

(Ku − z · f (Ku))i︸ ︷︷ ︸
F1(Ku)

+ ‖∇u − w‖2,1︸ ︷︷ ︸
F2(∇u−w)

+ α‖ε(w)‖2,1︸ ︷︷ ︸
F3(ε(w))

+ ıRN
+
(u) + ıC(u)︸ ︷︷ ︸

G(u)



CP algorithm is a proximal algorithm

Inverse problem

ûλ = arg min
u∈RN ,

w∈RN×2

λ

N∑
i=1

(Ku − z · f (Ku))i︸ ︷︷ ︸
F1(Ku)

+ ‖∇u − w‖2,1︸ ︷︷ ︸
F2(∇u−w)

+ α‖ε(w)‖2,1︸ ︷︷ ︸
F3(ε(w))

+ ıRN
+
(u) + ıC(u)︸ ︷︷ ︸

G(u)

The proximal operator of ϕ : X → X evaluated in x̃ ∈ X is unique and
defined as (Parikh 2013)

proxϕ(x̃) := arg min
x∈X

1
2‖x̃ − x‖22 + ϕ(x).

In our case, proximal operators of F1,F ?1 ,F2,F ?2 ,F3,F ?3 and G are easy
to compute (closed form).



CP algorithm applied to PET images deconvolution

Algorithm 1 for TGV denoising and deblurring of PET images.

1: initialization: n = 0 ; u(0) = ū(0) = y ∈ RN ; w (0) = w̄ (0) = 0 ∈
RN×2 ; p(0) = 0 ∈ RN ; q(0) = 0 ∈ RN×2 ; r (0) = 0 ∈ RN×4 ; choose
τ (0) = σ(0) = 0.9/‖L‖2.

2: repeat
3: p(n+1) = proxσ(n)F?

1
(p(n) + σ(n)Kū(n))

4: q(n+1) = proxσ(n)F?
2

(q(n) + σ(n)(∇ū(n) − w̄ (n)))

5: r (n+1) = proxσ(n)F?
3

(r (n) + σ(n)ε(w̄ (n)))

6: u(n+1) = proxτ (n)G (u(n) + τ (n)(div[q(n)]−K∗p(n)))
7: w (n+1) = w (n) − τ (n)(−q(n) − div[r (n)])
8: ū(n+1) = 2u(n+1) − u(n)

9: w̄ (n+1) = 2w (n+1) −w (n)

10: until convergence of u
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The discrepancy Principle is one strategy to select λ

The Morozov’s discrepancy principle for Poisson noise (Bertero 2009):

KL(z ,Kûλ) ≈ N
2
,

where

KL(z ,Kûλ) =
N∑

i=1

(Kûλ − z + z · f (z)− z · f (Kûλ))i

is the Kullback-Leibler difference.



This principle can be adapted to images with nul background

The Morozov’s discrepancy principle for Poisson noise in images with low
intensity and no background (Carlavan 2011):

KL(z ,Kûλ) ≈ M
2
,

where M ≤ N is the number of non zero pixels.

Updating rule for tuning parameter λ at iteration l

λ(l+1) = λ(l)KL(z ,Kû
λ(l ))

M/2
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A modified Shepp-Logan phantom without constant areas

→

Affine

Sinusoidal

Gaussian

Original phantom Modified phantom

Image properties:

Size: 128× 128 pixels;

Pixel values: [0, 255];

Null background;



Experiments realized for 13 different levels of noise

Synthetic data model

zβ = P( β K u0)

Influence of acquisition time
Gaussian kernel with σ = 1.17 pixel

β = 0.01 β = 0.05 β = 0.2 β = 1 β = 5 β = 20 β = 100



TGV restoration is visually good, without staircasing artifact
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In average, SNRout of TGV is 0.5 dB above TV’s

−2 −1 1 2

10
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3.4 dB 10.4 dB

log10 β [-]

SNRout [dB]TGV
TV

SNRout(ûβ ,u0) = 20 log10

(
‖ûβ‖2

‖ûβ − u0‖2

)



The criterion for automatic selection of λopt converges to 1
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KL ratio

Mean
Standard deviation

λ(l+1) = λ(l)
KL(z ,Kûλ)

M/2︸ ︷︷ ︸
KL ratio

, l ∈ N



PET images of patients with tumour in the head-neck region

Image properties:

Size: 128× 128 pixels with a resolution of 2.2× 2.2 mm2;

PSF measured experimentally: Gaussian and isotropic with 6 mm of
FWHM, in first approximation.



The updating rule for the choice of λopt does not work...

λ = 5

The assumption of pure Poisson noise is not verified:

z = γ P(βKu0), γ ∈ R+
0

Is it possible to find an optimal value for λ? Is it useful?
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What is next?

Some good things...
TGV is more adapted to real medical data;
the updating rule of λ is validated for synthetic data.

... but challenges remain!
a deeper understanding of the nature of the noise;
an updating rule more flexible to noises of different natures;
a connection between restoration and segmentation.
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