Computational Imaging with Plugand-play priors: Leverage the Power of Deep Learning

Xiaojian Xu Supervised by Dr. Ulugbek Kamilov Washington University in St. Louis

Imaging is everywhere

imaging in microscopy

imaging in photography

imaging in astronomy

Big shift in imaging

• Imaging not by taking pictures but by computing pictures

Computational imaging applications

• In computational imaging, we don't have direct access to the thing we want

imaging skeleton

imaging blackhole

imaging infant

A simple microscopy imaging problem (Acquisition)

5

A simple microscopy imaging problem (Reconstruction)

Computational Imaging is the process of indirectly forming images from measurements using algorithms that rely on a significant amount of computing.

soure: https://en.wikipedia.org/wiki/Computational_imaging

Imaging needs two procedures

Imaging as an inverse problem

Signal Acquisition Procedure

Forward problem: generate y from x

Inverse problem: recover \boldsymbol{x} from \boldsymbol{y}

Imaging inverse problems are challenging

What makes imaging inverse problems challenging?

- Solution is not unique
- Measurements are noisy
- ♣ Image x can be high-dimensional

Computation imaging methods

• Formulate it as a **regularized optimization** task (model-based optimization)

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \{ g(\boldsymbol{x}) + \underset{\boldsymbol{x}}{\operatorname{prior/regularizer}}$$

$$example: \quad \widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \{ \frac{1}{2} || \mathbf{H}(\boldsymbol{x}) - \boldsymbol{y} ||^2 + h(\boldsymbol{x}) \}$$

• Learn an end-to-end mapping

• Combining optimization & learning!

,,	·	·	
Linnelling	DED	$\mathbf{D}_{\mathbf{r}}\mathbf{D}$	i
i Unroning i	! KLD	! FNP }	
· · · · · · · · · · · · · · · · · · ·	¦j	¦i	i

Computation imaging methods

• Formulate it as a **regularized optimization** task (model-based optimization)

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \{ g(\boldsymbol{x}) + \underset{\boldsymbol{x}}{\operatorname{prior/regularizer}}$$

$$example: \quad \widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \{ \frac{1}{2} \| \mathbf{H}(\boldsymbol{x}) - \boldsymbol{y} \|^2 + h(\boldsymbol{x}) \}$$

• Learn an end-to-end mapping

• Combining optimization & learning!

_			,	
			!	
	TT 11.	DDD	! nn i	
	Inrolling!	! R H(I) i	! PnP ;	
			! 1111 ;	
			! i	

Today we will talk about

- 1. Introduction to Plug-and-Play Priors (PnP)
- Denoiser strength selecting challenge
- Optimization interpretation and convergence analysis challenge

- 2. Denoiser scaling technique
- [Xu'20(1)] X. Xu et.al. Boosting the Performance of Plug-and-Play Priors via Denoiser Scaling

- 3. Optimization interpretation and convergence analysis of PnP with MMSE denoisers
 - [Xu'20(2)] X. Xu et.al. Provable Convergence of Plug-and-Play Priors With MMSE Denoisers,

Imaging as a regularized optimization task

• Recall our regularized optimization task

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \{ g(\boldsymbol{x}) + \underset{\boldsymbol{x}}{\operatorname{prior/regularizer}} \}$$

Example: Fast iterative shrinkage/thresholding algorithm (FISTA) [Nesterov'13] & Alternating direction method of multipliers (ADMM) [Boyd'10]

FISTA

$$egin{aligned} oldsymbol{z}^k &\leftarrow oldsymbol{s}^{k-1} - \gamma
abla g(oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &\leftarrow \operatorname{prox}_{\gamma h}(oldsymbol{z}^k) \ oldsymbol{s}^k &\leftarrow oldsymbol{x}^k + ((q_{k-1}-1)/q_k)(oldsymbol{x}^k - oldsymbol{x}^{k-1}) \end{aligned}$$

ADMM

$$egin{aligned} oldsymbol{z}^k &\leftarrow \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &\leftarrow \mathsf{prox}_{\gamma h}(oldsymbol{z}^k + oldsymbol{s}^{k-1}) \ oldsymbol{s}^k &\leftarrow oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k) \end{aligned}$$

Proximal algorithms

• Let's take a closer look at these two proximal algorithms

FISTA ADMM

$\boldsymbol{z}^k \leftarrow \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$	increase data consistency	$\boldsymbol{z}^k \leftarrow prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k)$	reduce noise	$\boldsymbol{x}^k \leftarrow prox_{\gamma h}(\boldsymbol{z}^k + \boldsymbol{s}^{k-1})$
$m{s}^k \leftarrow m{x}^k + ((q_{k-1} - 1)/q_k)(m{x}^k - 1)$	$x^{k-1})$	$\boldsymbol{s}^k \leftarrow \boldsymbol{s}^{k-1} + (\boldsymbol{z}^k - \boldsymbol{x}^k)$

Proximal algorithms

• Let's take a closer look at these two proximal algorithms

FISTA	ADMM
-------	------

$\boldsymbol{z}^k \leftarrow \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$	increase data consistency	$\boldsymbol{z}^k \leftarrow prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k)$	reduce noise	$oldsymbol{x}^k \leftarrow prox_{\gamma h}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$s^k \leftarrow x^k + ((q_{k-1} - 1)/q_k)(x^k - 1)$	$-oldsymbol{x}^{k-1})$	$oldsymbol{s}^k \leftarrow oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k)$

Plug and Play Prior (PnP) [Venkat'13]:

simply replace the proximal map with other denoisers $D_{\sigma}!$

$$\mathsf{prox}_{\gamma h} \Rightarrow \mathsf{D}_{\sigma}$$

where $\sigma \ge 0$ refers to denoising strength.

PnP: Incorporating a denoiser in the optimization

any off-the-shelf

image denoiser

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA

$$\boldsymbol{z}^k = \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$$

$$oldsymbol{x}^k = \mathsf{D}_{oldsymbol{\sigma}}(oldsymbol{z}^k)$$

$$s^k = x^k + ((q_{k-1} - 1)/q_k)(x^k - x^{k-1})$$

PnP-ADMM

$$oldsymbol{z}^k = \mathsf{prox}_{\gamma q}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1})$$

$$oldsymbol{x}^k = {\color{red}\mathsf{D}_{oldsymbol{\sigma}}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$$

$$m{s}^k = m{s}^{k-1} + (m{z}^k - m{x}^k)$$

Example: D_{σ} could be a neural network

Convolutional Neural Networks

PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA		PnP-ADMM
$\boldsymbol{z}^k = \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$		$\boldsymbol{z}^k = prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k)$	$\sigma = ?$	$oldsymbol{x}^k = oldsymbol{D}_{oldsymbol{\sigma}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$s^k = x^k + ((q_{k-1} - 1)/q_k)(x^k - x^{k-1})$		$\boldsymbol{s}^k = \boldsymbol{s}^{k-1} + (\boldsymbol{z}^k - \boldsymbol{x}^k)$

However, ...

❖ Many CNNs denoisers do not have a tunable parameter for the noise standard deviation!

PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA		PnP-ADMM
$oldsymbol{z}^k = oldsymbol{s}^{k-1} - \gamma abla g(oldsymbol{s}^{k-1})$		$\boldsymbol{z}^k = prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k)$	$\sigma = ?$	$oldsymbol{x}^k = oldsymbol{D}_{oldsymbol{\sigma}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$s^k = x^k + ((q_{k-1} - 1)/q_k)(x^k - x^{k-1})$		$\boldsymbol{s}^k = \boldsymbol{s}^{k-1} + (\boldsymbol{z}^k - \boldsymbol{x}^k)$

- Previous solution : denoiser selection
 - ❖ Idea: Training multiple CNN instances and select the one that works best.
 - ◆ Issues: Requires training multiple CNN instances and leads to suboptimal performance.

Proposed denoiser scaling technique

• Plug-and-Play (PnP) embraces off-the-shelf image denoisers

PnP-FISTA		PnP-ADMM
$\boldsymbol{z}^k = \boldsymbol{s}^{k-1} - \gamma \nabla g(\boldsymbol{s}^{k-1})$		$\boldsymbol{z}^k = prox_{\gamma g}(\boldsymbol{x}^{k-1} - \boldsymbol{s}^{k-1})$
$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k)$	$\sigma = ?$	$oldsymbol{x}^k = D_{oldsymbol{\sigma}}(oldsymbol{z}^k + oldsymbol{s}^{k-1})$
$m{s}^k = m{x}^k + ((q_{k-1} - 1)/q_k)(m{x}^k - m{x}^{k-1})$		$oldsymbol{s}^k = oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k)$

- Our proposal [Xu'20(1)]: denoiser scaling
 - ♦ Introduce a tunable parameter µ to adjust the denoising strength of a pre-trained CNN.

Without scaling:
$$\hat{z} = D_{\sigma}(z)$$

Denoiser scaling:
$$\hat{z} = \mu^{-1} D_{\sigma}(\mu z), \quad \mu > 0$$

Performance of denoiser scaling

• CNN trained on noise level $\sigma = 20$, applied on noise level $\sigma = 30$, difference $\Delta_{\sigma} = 10$.

Noisy image: z

Without scaling: $\widehat{z} = D_{\sigma}(z)$

With scaling: $\hat{z} = \mu^{-1} D_{\sigma}(\mu z)$

Performance of denoiser scaling

• CNN trained on noise level $\sigma = 20$, applied on noise level $\sigma = 30$, difference $\Delta_{\sigma} = 10$.

Performance of denoiser scaling

• CNN trained on noise level $\sigma = 20$, applied on noise level $\sigma = 40$, difference $\Delta_{\sigma} = 20$.

Theoretical analysis of denoiser scaling

- Denoiser scaling is proved to have the following properties:
 - When the denoiser is a minimum mean-squared error (MMSE) denoiser, adjusting μ is equivalent to scale the variance of AWGN by μ^{-2} in the MMSE estimation.
 - When denoiser is a proximal map $\operatorname{prox}_{\lambda h}(z) := \arg\min\{\frac{1}{2}||x-z||_2^2 + \lambda h(x)\}$, where regularizer $h(\cdot)$ is 1-homogeneous with $h(\mu \cdot) = \mu \stackrel{x}{h}(\cdot)$, adjusting μ is equivalent to adjusting the weighting parameter λ of h.

PnP algorithms with denoiser scaling

• PnP algorithms with denoiser scaling

PnP-FISTA

$$egin{aligned} oldsymbol{z}^k &= oldsymbol{s}^{k-1} - \gamma
abla g(oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= \mathsf{D}_{\sigma}(oldsymbol{z}^k) \ oldsymbol{s}^k &= oldsymbol{x}^k + ((q_{k-1}-1)/q_k)(oldsymbol{x}^k - oldsymbol{x}^{k-1}) \end{aligned}$$

Scaled PnP-FISTA

$$egin{aligned} oldsymbol{z}^k &= oldsymbol{s}^{k-1} - \gamma
abla g(oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= oldsymbol{\mu}^{-1} \mathsf{D}_{\sigma}(oldsymbol{\mu} oldsymbol{z}^k) \ oldsymbol{s}^k &= oldsymbol{x}^k + ((q_{k-1}-1)/q_k)(oldsymbol{x}^k - oldsymbol{x}^{k-1}) \end{aligned}$$

PnP-ADMM

$$egin{aligned} oldsymbol{z}^k &= \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= \mathsf{D}_{\sigma}((oldsymbol{z}^k + oldsymbol{s}^{k-1})) \ oldsymbol{s}^k &= oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k) \end{aligned}$$

Scaled PnP-ADMM

$$egin{aligned} oldsymbol{z}^k &= \mathsf{prox}_{\gamma g}(oldsymbol{x}^{k-1} - oldsymbol{s}^{k-1}) \ oldsymbol{x}^k &= oldsymbol{\mu}^{-1} \mathsf{D}_{\sigma}(oldsymbol{\mu}(oldsymbol{z}^k + oldsymbol{s}^{k-1})) \ oldsymbol{s}^k &= oldsymbol{s}^{k-1} + (oldsymbol{z}^k - oldsymbol{x}^k) \end{aligned}$$

Inverse problem examples

• Image Super-resolution (SR) and Magnetic resonance imaging (MRI) problem

Scaling performance in image SR problem

• Scaling technique can sharpen the blurry edges caused by the suboptimal denoiser.

Scaling performance in MRI problem

• Scaling technique can alleviate the artifacts caused by the suboptimal denoiser.

Theoretical challenge of PnP scheme

Good!

❖ Denoiser scaling can effectively boost the performance of PnP algorithms and achieve the optimal results for different popular denoisers!

However,

* PnP algorithm lose the interpretation as an optimization problem for an arbitrary denoiser.

Theoretical challenge of PnP scheme

• PnP algorithm lose the interpretation as an optimization problem for an arbitrary denoiser.

For most off-the-shelf denoisers, it is impossible to write an explicit regularizer!

Provable Convergence of PnP with MMSE denoisers

• Can we build a relationship between some cost function *f* and some type of denoisers when running PnP?

$$f(\boldsymbol{x}) = g(\boldsymbol{x}) + ?$$

• Yes! Let's consider a MMSE denoiser:

$$\mathsf{D}_{\sigma}(\boldsymbol{y}) = \mathbb{E}[\boldsymbol{x} | \boldsymbol{y}]$$
 where $\boldsymbol{y} = \boldsymbol{x} + \boldsymbol{e}$, $\boldsymbol{e} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I})$, $\boldsymbol{x} \sim p_{\boldsymbol{x}}$.

- Convergence of PnP-ISTA with MMSE denoisers [For details, see Xu' 20(2)]
 - The iterates produced by PnP-ISTA with an MMSE denoiser converge to a stationary point of some global cost function.

$$f(\boldsymbol{x}) = g(\boldsymbol{x}) + h(\boldsymbol{x}) \text{ with } h(\boldsymbol{x}) := \begin{cases} -\frac{1}{2\gamma} \|\boldsymbol{x} - \mathsf{D}_{\sigma}^{-1}(\boldsymbol{x})\|^2 + \frac{\sigma^2}{\gamma} h_{\sigma}(\mathsf{D}_{\sigma}^{-1}(\boldsymbol{x})) & \text{for } \boldsymbol{x} \in \mathcal{X} \\ +\infty & \text{for } \boldsymbol{x} \notin \mathcal{X}, \end{cases}$$

Provable Convergence of PnP with MMSE denoisers

• Convergence and reconstruction performance of using MMSE denoiser and DnCNN for Bernoulli-Gaussian signals in compressive sensing

Convergence of PnP-ISTA for exact and approximate MMSE denoisers on loss function.

Convergence of PnP-ISTA for exact and approximate MMSE denoisers on SNR.

Summary of the talk

1. Introduction to Plug-and-Play Priors (PnP)

- Denoiser strength selecting challenge
- Optimization interpretation and convergence analysis challenge

2. Denoiser scaling technique [Xu'20(1)]

- We proposed a denoiser scaling technique that can help with the denoising strength tuning especially for CNN type of denoisers.
- We showed that denoiser scaling can effectively boost the performance of PnP algorithms and achieve the optimal results.

3. Optimization interpretation and convergence analysis of PnP with MMSE denoisers [Xu'20(2)]

• We show that the iterates produced by PnP-ISTA with an MMSE denoiser converge to a stationary point of some global cost function.

Additional key citations

- [Chan'16]: Chan et.al. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications, IEEE TCI, 2016
- [Venkat'13]: Venkat et.al. Plug-and-play priors for model based reconstruction, IEEE GlobalSIP, 2013.
- [Zakharov'19]: Zakharov et al. Few-Shot Adversarial Learning of Realistic Neural Talking Head Models, ICCV, 2019
- [Sun'19]: Sun et.al. Block coordinate regularization by denoising, NeurIPS, 2019.
- [Xia'19]: Xia et.al. Training Image Estimators without Image Ground-Truth, NeurIPS, 2019
- [Lee'18]: Lee et al. Deep residual learning for accelerated MRI using magnitude and phase networks, Trans. Bio. Eng. 2018
- [Ryu'19]: Ryu et al. Plug-and-play methods provably converge with properly trained denoisers, ICML 2019
- [Romano'17]: Romano et al. A little engine that could do: regularization by denoising, SIAM J. Imaging Sci, 2017
- [Sun'18]: Sun et.al. Efficient and accurate inversion of multiple scattering with deep learning, Opt. Express 26, 2018
- [Lehtinen'18]: Lehtinen et al. Noise2Noise, ICML. PMLR, 2018.
- [Ulyanov'18]: Ulyanov et al. Deep image prior, ICCV, 2018.
- [Aggarwal'18]: Aggarwal et al. MoDL: Model-based deep learning architecture for inverse problems, *IEEE TMI*, 2018
- [Zhang'18]: Zhang et al. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing, ICCV, 2018
- [Yang'16]: Yang et al. Deep ADMM-Net for compressive sensing MRI NeurIPS, 2016.
- [Liu'19]: Liu et al. Infusing Learned Priors into Model-Based Multispectral Imaging, arXiv preprint arXiv:1909.09313 (2019).

Thanks!