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Imaging is everywhere

imaging in microscopy imaging in photography imaging in astronomy
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Big shift in imaging

taking pictures computing pictures 

• Imaging not by taking pictures but by computing pictures
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Computational imaging applications

imaging blackholeimaging skeleton imaging infant

• In computational imaging, we don’t have direct access to the thing we want
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A simple microscopy imaging problem (Acquisition) 

illumination

some living cells

soure: [Ulugbek Kamilov]

measurements
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A simple microscopy imaging problem (Reconstruction) 

Computational Imaging

measurements image of  cells

Computational Imaging is the process of  indirectly forming 

images from measurements using algorithms that rely on a 

significant amount of  computing.
soure: https://en.wikipedia.org/wiki/Computational_imaging
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Imaging needs two procedures

measurements

Signal  
Acquisition

System

unknown 
image

Computational 
Imaging
Methods

reconstruction
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Imaging as an inverse problem

unknown image noise

ex

measurements

y = H(x) + e

Inverse problem: recover x from y

Image Reconstruction Procedure

forward model

H(·)

known knownunknown (target) unknown

Signal  Acquisition Procedure

Forward problem: generate y from x
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Imaging inverse problems are challenging

What makes imaging inverse problems challenging?

e y = H(x) + eH(·)x

Inverse problem: recover x from y

✤ Solution is not unique

✤ Image x can be high-dimensional

✤ Measurements are noisy
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Computation imaging methods

• Formulate it as a regularized optimization task (model-based optimization)

• Learn an end-to-end mapping

input outputsdeep neural network 
(DNNs)

soure: [Zakharov’19]

• Combining optimization & learning!

REDUnrolling …PnP

data-fidelity prior/regularizer
bx=argmin

x
{g(x)+h(x)} example: bx = argmin

x
{1
2
kH(x)� yk2 + h(x)}
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Today we will talk about

1. Introduction to Plug-and-Play Priors (PnP)
• Denoiser strength selecting challenge
• Optimization interpretation and convergence analysis challenge

2. Denoiser scaling technique
• [Xu’20(1)] X. Xu et.al. Boosting the Performance of  Plug-and-Play Priors via Denoiser Scaling

3. Optimization interpretation and convergence analysis of  PnP with MMSE denoisers
• [Xu’20(2)] X. Xu et.al. Provable Convergence of  Plug-and-Play Priors With MMSE Denoisers, 
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Imaging as a regularized optimization task 

• Recall our regularized optimization task

data-fidelity prior/regularizer
bx=argmin

x
{g(x)+h(x)}

FISTA ADMM

Example: Fast iterative shrinkage/thresholding algorithm (FISTA) [Nesterov’13] & 
Alternating direction method of  multipliers (ADMM) [Boyd’10]

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk  prox�g(x
k�1 � sk�1)

xk  prox�h(z
k + sk�1)

sk  sk�1 + (zk � xk)
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Proximal algorithms

FISTA

• Let’s take a closer look at these two proximal algorithms 

increase data consistency zk  prox�g(x
k�1 � sk�1)

xk  prox�h(z
k + sk�1)

sk  sk�1 + (zk � xk)

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

ADMM

model
bx=argmin

x
{g(x)+h(x)}

prior
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image denoiser for 
AWGNDefinition: prox�h(z) := argmin

x
{1
2
kx� zk22 + �h(x)}

� = 0.2� = 0.05soure: [Getreuer’12]

prox�TV(z)

reduce noise



Proximal algorithms

• Let’s take a closer look at these two proximal algorithms 

FISTA

increase data consistency 

reduce noise

zk  prox�g(x
k�1 � sk�1)

xk  prox�h(z
k + sk�1)

sk  sk�1 + (zk � xk)

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

ADMM

Plug and Play Prior (PnP) [Venkat’13]: 
simply replace the proximal map with other denoisers D𝜎!

prox�h ) D�

where σ ≥ 0 refers to denoising strength.

model
bx=argmin

x
{g(x)+h(x)}

prior
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PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

any off-the-shelf  
image denoiser

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

Example: D𝜎 could be a neural network 
Convolutional Neural Networks 

(CNNs)
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PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

� =?
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However, …

✤ Many CNNs denoisers do not have a tunable parameter for the noise standard 
deviation!



PnP: Incorporating a denoiser in the optimization

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

� =?

• Previous solution : denoiser selection

✪ Idea: Training multiple CNN instances and select the one that works best. 
✪ Issues: Requires training multiple CNN instances and leads to suboptimal performance.
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Proposed denoiser scaling technique

• Plug-and-Play (PnP) embraces off-the-shelf  image denoisers 

PnP-FISTA PnP-ADMM

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = D�(z
k + sk�1)

sk = sk�1 + (zk � xk)

� =?

• Our proposal [Xu’20(1)] : denoiser scaling

✪ Introduce a tunable parameter µ to adjust  the denoising strength of  a pre-trained CNN.

Without scaling: 
Denoiser scaling: bz = µ�1D�(µz), µ > 0
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Performance of  denoiser scaling

bz = D�(z)
Without scaling: 

• CNN trained on noise level 𝜎 = 20, applied on noise level 𝜎 = 30, difference ∆! =10.

Corrupted (SNR = 9.58 dB)

Noisy image:
z

With scaling: 
bz = µ�1D�(µz)

20



Performance of  denoiser scaling

Ground truth

3.61 dB 0.04 dB

Corrupted image(𝜎 = 30)

12.22 dB

Unscaled

19.86 dB

Scaled

23.47 dB

Optimized

23.51 dB

• CNN trained on noise level 𝜎 = 20, applied on noise level 𝜎 = 30, difference ∆! =10.

*Number written to image is signal-to-noise ratio (SNR)
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Performance of  denoiser scaling

OptimizedGround truth Corrupted image(𝜎 = 40) Unscaled Scaled

9.19 dB 14.35 dB 23.24 dB 23.38 dB

8.89 dB 0.14 dB

• CNN trained on noise level 𝜎 = 20, applied on noise level 𝜎 = 40, difference ∆! =20.
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Theoretical analysis of  denoiser scaling

• Denoiser scaling is proved to have the following properties:
✪When the denoiser is a minimum mean-squared error (MMSE) denoiser, adjusting 
µ is equivalent to scale the variance of  AWGN by µ"# in the MMSE estimation.

✪When denoiser is a proximal map                                                               , where        
regularizer h(%) is 1-homogeneous with h(µ % ) = µ h(%), adjusting µ is equivalent to 
adjusting the weighting parameter 𝜆 of  h.

prox�h(z) := argmin
x

{1
2
kx� zk22 + �h(x)}

31
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DnCNN*
DnCNN* (Optimized)
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log2 µ

-6

� = 1
� = 5
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BM3D
BM3D (Optimized)

-2
log2 µ
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TV

-2
log2 µ

TV (Optimized)

2

*Plots are generated with noisy image at noise level σ =  7.23
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PnP algorithms with denoiser scaling

• PnP algorithms with denoiser scaling

PnP-FISTA PnP-ADMM

)

Scaled PnP-ADMM

)

Scaled PnP-FISTA

zk = sk�1 � �rg(sk�1)

xk = µ�1D�(µz
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = prox�g(x
k�1 � sk�1)

xk = µ�1D�(µ(z
k + sk�1))

sk = sk�1 + (zk � xk)

zk = prox�g(x
k�1 � sk�1)

xk = D�((z
k + sk�1))

sk = sk�1 + (zk � xk)

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)
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Inverse problem examples
• Image Super-resolution (SR) and Magnetic resonance imaging (MRI) problem

Low-resolution image

Under-sampled frequencies Clean image

SR inverse problem

MRI inverse problem

High-resolution image
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Scaling performance in image SR problem

• Scaling technique can sharpen the blurry edges caused by the suboptimal denoiser.

Unscaled CNN

17.09 dB

Scaled CNN (Ours)

17.63 dB

0.54 dB

Optimized

17.59 dB

0.04 dB 27



Scaling performance in MRI problem

• Scaling technique can alleviate the artifacts caused by the suboptimal denoiser.

Ground truth

19.98 dB

Unscaled CNN

24.07 dB

Scaled CNN (Ours)

23.67 dB

Optimized 

4.09 dB 0.4 dB 28



Theoretical challenge of  PnP scheme

✤ Denoiser scaling  can effectively boost the performance of  PnP algorithms and 
achieve the optimal results  for different popular denoisers!

However, ….

✤ PnP algorithm lose the interpretation as an optimization problem for an 
arbitrary denoiser.

Good!
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Theoretical challenge of  PnP scheme

• PnP algorithm lose the interpretation as an optimization problem for an arbitrary 
denoiser.

FISTA PnP-FISTA

any off-the-shelf  
denoiser

For most off-the-shelf  
denoisers, it is impossible to 
write an explicit regularizer! 

prior
bx=argmin

x
{g(x)+ ? }

objective functionobjective function
prior

bx=argmin
x

{g(x)+h(x)}

)proximal map

zk  sk�1 � �rg(sk�1)

xk  prox�h(z
k)

sk  xk + ((qk�1 � 1)/qk)(x
k � xk�1)

zk = sk�1 � �rg(sk�1)

xk = D�(z
k)

sk = xk + ((qk�1 � 1)/qk)(x
k � xk�1)
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Provable Convergence of  PnP with MMSE denoisers

• Yes! Let’s consider a MMSE denoiser: 

D�(y)=E [x |y] where y=x+e, e⇠N (0,�2I), x⇠px.

• Can we build a relationship between some cost function f  and some type of  denoisers 
when running PnP?

f(x)=g(x) + ?

• Convergence of  PnP-ISTA with MMSE denoisers [ For details, see Xu’ 20(2)]

• The iterates produced by PnP-ISTA with an MMSE denoiser converge to
a stationary point of some global cost function.

f(x)=g(x)+h(x) with h(x) :=

(
� 1

2� kx�D�1
� (x)k2+ �2

� h�(D�1
� (x)) for x2X

+1 for x /2X ,
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Provable Convergence of  PnP with MMSE denoisers

• Convergence and reconstruction performance of  using MMSE denoiser and 
DnCNN for Bernoulli-Gaussian signals in compressive sensing

Iterations

20

10

0
1 100

SN
R 

(d
B)

 

PnP-ISTA (MMSE)
PnP-ISTA (DnCNN)
LASSO

Iterations

1

-0.1
1 100

PnP-ISTA (MMSE)
PnP-ISTA (DnCNN)

f
(x

t )
/f

(x
0
)

Convergence of  PnP-ISTA for exact and approximate 
MMSE denoisers on loss function.

Convergence of  PnP-ISTA for exact and approximate 
MMSE denoisers on SNR.
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Summary of  the talk

1. Introduction to Plug-and-Play Priors (PnP)
• Denoiser strength selecting challenge
• Optimization interpretation and convergence analysis challenge

2. Denoiser scaling technique [Xu’20(1)]
• We proposed a denoiser scaling technique that can help with the denoising strength tuning especially 

for CNN type of  denoisers.

• We showed that denoiser scaling can effectively boost the performance of  PnP algorithms and achieve 
the optimal results.

3. Optimization interpretation and convergence analysis of  PnP with MMSE denoisers [Xu’20(2)]
• We show that the iterates produced by PnP-ISTA with an MMSE denoiser converge to a stationary 

point of  some global cost function.
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Thanks!


