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Compressed sensing
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Under-determined system
M < N

= +ny 2 CM

� 2 CM⇥N

• Linear measurements of s 2 CN

s
↵

2 CN

 
2 CN

#{j : ↵j 6= 0} k↵k0  K ⌧ N

s =

• K-sparse signal

• To obtain s, compressive sensing advocates solving

(P1)b↵ := argmin

e↵2CN

ke↵k1 subject to ky �� e↵k2  ✏.

• Succeeds, if M is ‘large’ enough, and         is nice� 
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Useful information without reconstruction
• Sometimes, it is sufficient if we can extract specific 

information about s

• Example - Localisation of known patterns in an image
• Biological applications

• 1D: speech/audio processing

s

• Location is a continuous 
parameter

• Only compressive samples 
are available
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Signal model

• Fixed sampling grid

•                   vector of samples of f⌧j 2 RN : fc(t� ⌧j)

t

fc(t) :•            known signal

• Continuous signal model

sc(t) =
KX

j=1

↵jfc(t� ⌧j)

unknown amplitude and 
delay

•                  {↵j}, {⌧j} :

continuous•                  {↵j}, {⌧j} :•                       : discrete signals =
KX

j=1

↵jf⌧j
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Discrete finite signal dictionary
• Suppose             ,     K ⌧ N

s is sparse w.r.t a dictionary containing by ALL admissible translations of fc(t)

But, impossible!

• So, settle for a finite equivalent

 =
⇥
f �1 ,f �2 . . .f �D

⇤
given a finite sampling of delay parameters                , with step size     , 
build

{�i}Di=1 �

• Small            strongly correlated columns� !

• Solving (P1) can only estimate delays with error in  [��/2, �/2]
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From on grid to off grid delays

Taylor interpolation around 
each column

Figures taken from the reference [Ekanadham 2011]

Three consecutive 
columns of            

• Let M : Set of all delayed and scaled signals

• Columns of     : linear subspace approximation of M 

• Idea: Include interpolator functions in  

• Solve specialised (P1) to obtain the off grid delays
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Polar interpolation 1/2
• If          is such thatfc(t)

• Polar interpolation: Approximation by an arc of a circle

fc(t� ⌧) ⇡ c(t) + r cos

✓
2⌧

�

✓

◆
u(t) + r sin

✓
2⌧

�

✓

◆
v(t) ⌧ 2 [��/2,�/2]

kfc(t� �i)k2 = kfc(t� �j)k2•                                          for all          : norm preservation                        �i, �j

•  

symmetric curvature

kfc(t� �i)� fc(t� �i + �)k2 = kfc(t� �i)� fc(t� �i � �)k2

• Any segment of       around      can be written asM �i

0

@
fc(t� �i +�/2)

fc(t� �i)
fc(t� �i ��/2)

1

A
=

0

@
1 r cos(✓) �r sin(✓)
1 r 0

1 r cos(✓) r sin(✓)

1

A

0

@
c(t)
u(t)
v(t)

1

A

r = kfc(t)k2 ✓ = angle(fc(t� �i), fc(t� �i +�/2))
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Polar interpolation 2/2

Figures taken from the reference [Ekanadham 2011]

• Incorporate all the interpolating functions in the dictionary  

• Solve specialised (P1) to obtain the off grid delays

• Perform reconstruction oblivious of delay-scale model

• Estimate delays in signal domain (matched filtering, etc.)
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From proxy delays to actual delays
• Idea: Greedy approach

• Select a column of       that maximally correlates with residue   

• Obtain new residue incorporating the interpolated function
• Repeat K times 

yres = y•  

• Use the obtained proxy delay      and perform polar interpolation 
to obtain 

�p
⌧̂j

yres ⇡ �
⇥
f �p��/2 f �p f �p+�/2

⇤
0

@
2

4
1 r cos(✓) �r sin(✓)
1 r 0

1 r cos(✓) r sin(✓)
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5
�11

A
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x
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4
↵j

↵jr cos
�
2⌧✓
�

�

↵jr sin
�
2⌧✓
�

�

3

5
⌧̂j = �j + arctan

✓
x̂3

x̂2

◆
�

2✓
solved as least 
squares
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Example: Compressive deflectometry 1/2
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Location of dominant 
deflection.

•     : 2D Gaussian

with radius    , translated by   .⇢ ⌧

f⇢
⌧

• Each       characterised by b⌧
k

= (c̄x
k

, c̄y
k

)T .sk

• Several images {sk}

• Efficiently implemented as convolution

• Matched filtering b⌧k = argmax

⌧
|hsk,f⇢

⌧ i|.

• To obtain proxy translation parameter
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Example: Compressive deflectometry 2/2

• Compressive matched filtering (Smashed filtering)

e⌧k = argmax

⌧
|h�Tyk,f

⇢
⌧ i|.yk 2 RM ,

• Large enough M
• achieves maximum at same location as in signal domain

• Efficiently implemented as convolution

• Translation estimation = 1 convolution + 1 least squares
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Experimental results
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• Synthetic
• randomly generated Gaussian patterns
• ground truth known

• Experimental 
• deflectometric data of two lenses
• reference translations: obtain using full reconstruction 

• Error: absolute pixel error between estimate and reference
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Summary
• A signal model and method to estimate continuous parameters 

from compressive measurements

• Possible interesting direction:
• Learn the function
• others? 

• References

1) Ekanadham, C., Tranchina, D., & Simoncelli, E. P. (2011). Recovery of Sparse Translation-Invariant 
Signals With Continuous Basis Pursuit. IEEE TSP, 59(10), 4735–4744.

2) Fyhn, K., Duarte, M. F., & Jensen, S. H. (2013, May 15). Compressive Parameter Estimation for 
Sparse Translation-Invariant Signals Using Polar Interpolation. arXiv.org.

3) Jacques, L., & De Vleeschouwer, C. (2008). A Geometrical Study of Matching Pursuit 
Parametrization. Signal Processing, IEEE Transactions on, 56(7), 2835–2848.

4) Davenport, M. A., Duarte, M. F., Wakin, M., Laska, J., Takhar, D., Kelly, K., & Baraniuk, R. 
(2007). The smashed filter for compressive classification and target recognition. Proc. SPIE 
Computational Imaging V, 6498.

fc(t)


