Continuous Parameter Estimation from Compressive Samples

Prasad Sudhakar Postdoctoral researcher, ICTEAM school Université catholique de Louvain, Belgium

09 October, 2013 ISP Seminars, UCL

Avec le soutien de la DGO6 Département du Développement Technologique

Compressed sensing

• Linear measurements of $\boldsymbol{s} \in \mathbb{C}^N$

- *K*-sparse signal
 - $egin{aligned} oldsymbol{s} &= oldsymbol{\Psi} oldsymbol{lpha} \ &\in \mathbb{C}^N \ &\in \mathbb{C}^N \ &\#\{j: lpha_j
 eq 0\} \ \|oldsymbol{lpha}\|_0 \leq K \ll N \end{aligned}$

To obtain s, compressive sensing advocates solving

$$\widehat{\boldsymbol{\alpha}} := \underset{\widetilde{\boldsymbol{\alpha}} \in \mathbb{C}^N}{\arg \min} \| \widetilde{\boldsymbol{\alpha}} \|_1 \text{ subject to } \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \widetilde{\boldsymbol{\alpha}} \|_2 \le \epsilon.$$
 (P1)

• Succeeds, if M is 'large' enough, and $\Phi \Psi$ is nice

Useful information without reconstruction

- Sometimes, it is sufficient if we can extract specific information about \boldsymbol{s}
- Example Localisation of *known* patterns in an image

- Biological applications
- 1D: speech/audio processing
- Location is a continuous parameter
- Only compressive samples are available

Signal model

• Continuous signal model

$$s_c(t) = \sum_{j=1}^{K} \alpha_j f_c(t - \tau_j)$$

• $\{\alpha_j\}, \{\tau_j\}$:unknown amplitude and delay

• Fixed sampling grid

•
$$f_{\tau_j} \in \mathbb{R}^N$$
: vector of samples of $f_c(t - \tau_j)$
• $s = \sum_{j=1}^K \alpha_j f_{\tau_j}$: discrete signal • $\{\alpha_j\}, \{\tau_j\}$: continuous

Discrete finite signal dictionary

• Suppose $K \ll N$,

 $m{s}$ is sparse w.r.t a dictionary containing by ALL admissible translations of $f_c(t)$

But, impossible!

• So, settle for a finite equivalent

given a finite sampling of delay parameters $\{\delta_i\}_{i=1}^D$, with step size Δ , build

$$\boldsymbol{\Psi} = \left[\boldsymbol{f}_{\delta_1}, \boldsymbol{f}_{\delta_2} \dots \boldsymbol{f}_{\delta_D}
ight]$$

• Small $\Delta \rightarrow$ strongly correlated columns

• Solving (P1) can only estimate delays with error in $[-\Delta/2, \Delta/2]$

From on grid to off grid delays

- Let \mathcal{M} : Set of all delayed and scaled signals
- Columns of Ψ : linear subspace approximation of $\mathcal M$

Taylor interpolation around each column

- Idea: Include interpolator functions in Ψ
- Solve specialised $(\mathbf{P1})$ to obtain the off grid delays

Figures taken from the reference [Ekanadham 2011]

Polar interpolation 1/2

- If $f_c(t)$ is such that
 - $||f_c(t-\delta_i)||_2 = ||f_c(t-\delta_j)||_2$ for all δ_i, δ_j : norm preservation

•
$$||f_c(t-\delta_i) - f_c(t-\delta_i+\delta)||_2 = ||f_c(t-\delta_i) - f_c(t-\delta_i-\delta)||_2$$

symmetric curvature

- Polar interpolation: Approximation by an arc of a circle
 - Any segment of \mathcal{M} around δ_i can be written as

$$f_c(t-\tau) \approx c(t) + r \cos\left(\frac{2\tau}{\Delta}\theta\right) u(t) + r \sin\left(\frac{2\tau}{\Delta}\theta\right) v(t) \quad \tau \in \left[-\Delta/2, \Delta/2\right]$$

$$\begin{pmatrix} f_c(t-\delta_i+\Delta/2)\\f_c(t-\delta_i)\\f_c(t-\delta_i-\Delta/2) \end{pmatrix} = \begin{pmatrix} 1 & r\cos(\theta) & -r\sin(\theta)\\1 & r & 0\\1 & r\cos(\theta) & r\sin(\theta) \end{pmatrix} \begin{pmatrix} c(t)\\u(t)\\v(t) \end{pmatrix}$$
$$r = \|f_c(t)\|_2 \quad \theta = \text{angle}(f_c(t-\delta_i), f_c(t-\delta_i+\Delta/2))$$

Polar interpolation 2/2

- Incorporate all the interpolating functions in the dictionary Ψ
- Solve specialised (P1) to obtain the off grid delays

- Perform reconstruction oblivious of delay-scale model
 - Estimate delays in signal domain (matched filtering, etc.)

From proxy delays to actual delays

- Idea: Greedy approach
 - $\boldsymbol{y}_{res} = \boldsymbol{y}$
 - Select a column of Ψ that maximally correlates with residue
 - Use the obtained proxy delay δ_p and perform polar interpolation to obtain $\hat{ au}_j$

$$\boldsymbol{y}_{res} \approx \boldsymbol{\Phi} \begin{bmatrix} \boldsymbol{f}_{\delta_p - \Delta/2} & \boldsymbol{f}_{\delta_p} & \boldsymbol{f}_{\delta_p + \Delta/2} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & r\cos(\theta) & -r\sin(\theta) \\ 1 & r & 0 \\ 1 & r\cos(\theta) & r\sin(\theta) \end{bmatrix}^{-1} \end{pmatrix}^T \boldsymbol{x}$$

$$\boldsymbol{x} = \begin{bmatrix} \alpha_j \\ \alpha_j r \cos\left(\frac{2\tau\theta}{\Delta}\right) \\ \alpha_j r \sin\left(\frac{2\tau\theta}{\Delta}\right) \end{bmatrix} \qquad \text{solved as least} \qquad \hat{\tau}_j = \delta_j + \arctan\left(\frac{\hat{x}_3}{\hat{x}_2}\right) \frac{\Delta}{2\theta}$$

- Obtain new residue incorporating the interpolated function
- Repeat K times

Example: Compressive deflectometry 1/2

- Several images $\{\boldsymbol{s}_k\}$
- Each \boldsymbol{s}_k characterised by $\widehat{\tau}_k = (\overline{c}_k^x, \overline{c}_k^y)^T$.
- $\boldsymbol{f}^{
 ho}_{ au}$: 2D Gaussian

with radius ho, *translated* by T.

Location of dominant deflection.

• To obtain proxy translation parameter

• Matched filtering
$$\widehat{ au}_k = rgmax_{ au} |\langle m{s}_k, m{f}^{
ho}_{ au}
angle|.$$

• Efficiently implemented as convolution

Example: Compressive deflectometry 2/2

• Compressive matched filtering (Smashed filtering)

$$oldsymbol{y}_k \in \mathbb{R}^M, \widetilde{ au}_k = rgmax_ au |\langle oldsymbol{\Phi}^T oldsymbol{y}_k, oldsymbol{f}_ au^
ho
angle|.$$

- Efficiently implemented as convolution
- Large enough M
 - achieves maximum at same location as in signal domain

• Translation estimation = 1 convolution + 1 least squares

Experimental results

- Synthetic
 - randomly generated Gaussian patterns
 - ground truth known
- Experimental
 - deflectometric data of two lenses
 - reference translations: obtain using full reconstruction
- Error: absolute pixel error between estimate and reference

Summary

- A signal model and method to estimate continuous parameters from compressive measurements
- Possible interesting direction:
 - Learn the function $f_c(t)$
 - others?
- References
 - 1) Ekanadham, C., Tranchina, D., & Simoncelli, E. P. (2011). Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit. *IEEE TSP*, 59(10), 4735–4744.
 - 2) Fyhn, K., Duarte, M. F., & Jensen, S. H. (2013, May 15). Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation. arXiv.org.
 - 3) Jacques, L., & De Vleeschouwer, C. (2008). A Geometrical Study of Matching Pursuit Parametrization. Signal Processing, IEEE Transactions on, 56(7), 2835–2848.
 - 4) Davenport, M. A., Duarte, M. F., Wakin, M., Laska, J., Takhar, D., Kelly, K., & Baraniuk, R. (2007). The smashed filter for compressive classification and target recognition. Proc. SPIE Computational Imaging V, 6498.