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Introduction

My PhD work

1 S. Belharbi, R.Hérault, C. Chatelain, S. Adam, Deep multi-task learning
with evolving weights, in conference: European Symposium on Artificial
Neural Networks (ESANN), 2016

2 S. Belharbi, C. Chatelain, R.Hérault, S. Adam, A regularization scheme
for structured output problems: an application to facial landmark
detection. 2016. submitted to Pattern Recognition journal (PR). ArXiv:
arxiv.org/abs/1504.07550

3 S. Belharbi, R.Hérault, C. Chatelain, R. Modzelewski, S. Adam, M. Chastan,
S. Thureau, Spotting L3 slice in CT scans using deep convolutional
network and transfer learning. To be submitted to Medical Image Analysis
journal (MIA). 2016.
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Introduction

Quick-informal introduction to Machine Learning

What is Machine Learning (ML)?

ML is programming computers (algorithms) to optimize a
performance criterion using example data or past experience.

Learning a task

Learn general models from data to perform a specific task f .

fw : x −→ y

x: input
y: output (target, label)
w: parameters of f
f (x;w) = y

From training to predicting the future: Learn to predict
1 Train the model using data examples (x,y)
2 Predict the ynew for the new coming xnew

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 2/71



images/logos

Introduction

Quick-informal introduction to Machine Learning

What is Machine Learning (ML)?

ML is programming computers (algorithms) to optimize a
performance criterion using example data or past experience.

Learning a task

Learn general models from data to perform a specific task f .

fw : x −→ y

x: input
y: output (target, label)
w: parameters of f
f (x;w) = y

From training to predicting the future: Learn to predict
1 Train the model using data examples (x,y)
2 Predict the ynew for the new coming xnew

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 2/71



images/logos

Introduction

Quick-informal introduction to Machine Learning

What is Machine Learning (ML)?

ML is programming computers (algorithms) to optimize a
performance criterion using example data or past experience.

Learning a task

Learn general models from data to perform a specific task f .

fw : x −→ y

x: input
y: output (target, label)
w: parameters of f
f (x;w) = y

From training to predicting the future: Learn to predict
1 Train the model using data examples (x,y)
2 Predict the ynew for the new coming xnew

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 2/71



images/logos

Introduction

Machine Learning applications
Face detection/recognition
Image classification
Handwriting recognition(postal address recognition, signature verification,
writer verification, historical document analysis (DocExplore
http://www.docexplore.eu))
Speech recognition, Voice synthesizing
Natural language processing (sentiment/intent analysis, statistical machine
translation, Question answering (Watson), Text understanding/summarizing,
text generation)
Anti-virus, anti-spam
Weather forecast
Fraud detection at banks
Mail targeting/advertising
Pricing insurance premiums
Predicting house prices in real estate companies
Win-tasting ratings
Self-driving cars, Autonomous robots
Factory Maintenance diagnostics
Developing pharmaceutical drugs (combinatorial chemistry)
Predicting tastes in music (Pandora)
Predicting tastes in movies/shows (Netflix)
Search engines (Google)
Predicting interests (Facebook)
Web exploring (sites like this one)
Biometrics (finger prints, iris)
Medical analysis (image segmentation, disease detection from symptoms)
Advertisements/Recommendations engines, predicting other books/products
you may like (Amazon)
Computational neuroscience, bioinformatics/computational biology, genetics
Content (image, video, text) categorization
Suspicious activity detection
Frequent pattern mining (super-market)
Satellite/astronomical image analysis
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Introduction

ML in physics

Event detection at CERN (The European Organization for Nuclear Research)

⇒ Use ML models to determine the probability of the event
being of interest.
⇒ Higgs Boson Machine Learning Challenge
(https://www.kaggle.com/c/higgs-boson)
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Introduction

ML in quantum chemistry

Computing the electronic density of a molecule
⇒ Instead of using physics laws, use ML (FAST).

See Stéphane Mallat et al. work: https://matthewhirn.
files.wordpress.com/2016/01/hirn_pasc15.pdf
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Introduction

How to estimate fw?

Models
Parametric (w) vs. non-parametric
Estimate fw = train the model using data
Training: supervised (use (x,y)) vs. unsupervised (use only x)
Training = optimizing an objective cost

Different models to learn fw
Kernel models (support vector machine (SVM))
Decision tree
Random forest
Linear regression
K-nearest neighbor
Graphical models

Bayesian networks
Hidden Markov Models (HMM)
Conditional Random Fields (CRF)

Neural networks (Deep learning): DNN, CNN, RBM, DBN, RNN.
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Introduction

Optimization using Stochastic Gradient Descent
(SGD)

wt ← wt−1 − ∂J (D;w)
∂w . D is a set of data.
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Deep multi-task learning with evolving weights

My PhD work

1 S. Belharbi, R.Hérault, C. Chatelain, S. Adam, Deep multi-task learning
with evolving weights, in conference: European Symposium on Artificial
Neural Networks (ESANN), 2016

2 S. Belharbi, C. Chatelain, R.Hérault, S. Adam, A regularization scheme
for structured output problems: an application to facial landmark de-
tection. 2016. submitted to Pattern Recognition journal (RP). ArXiv:
arxiv.org/abs/1504.07550

3 S. Belharbi, R.Hérault, C. Chatelain, R. Modzelewski, S. Adam, M. Chastan,
S. Thureau, Spotting L3 slice in CT scans using deep convolutional
network and transfer learning. To be submitted to Medical Analysis journal
(MIA). 2016.
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Deep multi-task learning with evolving weights

Deep learning Today
Deep learning state of the art

What is new today?
Large data
Calculation power (GPUS, clouds)

⇒ optimization
Dropout
Momentum, AdaDelta, AdaGrad, RMSProp, Adam, Adamax
Maxout, Local response normalization, local contrast
normalization, batch normalization
RELU
CNN, RBM, RNN
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Deep multi-task learning with evolving weights

Deep neural networks (DNN)
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Feed-forward neural network
Back-propagation error
Training deep neural networks is difficult
⇒ Vanishing gradient
⇒ Pre-training technique [Y.Bengio et al. 06, G.E.Hinton et al. 06]
⇒ More parameters⇒ Need more data
⇒ Use unlabeled data
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ŷ1

ŷ2
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Deep multi-task learning with evolving weights

Semi-supervised learning

General case:

Data = { labeled data (x,y)︸ ︷︷ ︸
expensive (money, time), few

,unlabeled data (x,−−)︸ ︷︷ ︸
cheap, abundant

}

E.g:
Collect images from the internet
Medical images

⇒ semi-supervised learning:

Exploit unlabeled data to improve the generalization
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Deep multi-task learning with evolving weights

Pre-training and semi-supervised learning

The pre-training technique can exploit the unlabeled data

A sequential transfer learning performed in 2 steps:
1 Unsupervised task (x labeled and unlabeled data)
2 Supervised task ( (x,y) labeled data)
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Deep multi-task learning with evolving weights

Layer-wise pre-training: auto-encoders
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A DNN to train
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Layer-wise pre-training: auto-encoders
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1) Step 1: Unsupervised layer-wise pre-training

Train layer by layer sequentially using only x (labeled or unlabeled)
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Layer-wise pre-training: auto-encoders
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1) Step 1: Unsupervised layer-wise pre-training

Train layer by layer sequentially using only x (labeled or unlabeled)
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Layer-wise pre-training: auto-encoders
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1) Step 1: Unsupervised layer-wise pre-training

Train layer by layer sequentially using only x (labeled or unlabeled)
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Layer-wise pre-training: auto-encoders
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1) Step 1: Unsupervised layer-wise pre-training

Train layer by layer sequentially using only x (labeled or unlabeled)

At each layer:
⇒ What hyper-parameters to use? When to stop training?
⇒ How to make sure that the pre-training improves the supervised task?
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Layer-wise pre-training: auto-encoders
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2) Step 2: Supervised training

Train the whole network using (x, y)

Back-propagation
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Deep multi-task learning with evolving weights

Pre-training technique: Pros and cons

Pros
Improve generalization
Can exploit unlabeled data
Provide better initialization than random
Train deep networks
⇒ Circumvent the vanishing gradient problem

Cons
Add more hyper-parameters
No good stopping criterion during pre-training phase

Good criterion for the unsupervised task
But

May not be good for the supervised task
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Deep multi-task learning with evolving weights

Proposed solution

Why is it difficult in practice?

⇒ Sequential transfer learning

Possible solution:

⇒ Parallel transfer learning

Why in parallel?

Interaction between tasks
Reduce the number of hyper-parameters to tune
Provide one stopping criterion
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Deep multi-task learning with evolving weights

Parallel transfer learning: Tasks combination

Train cost = supervised task + unsupervised task︸ ︷︷ ︸
reconstruction

l labeled samples, u unlabeled samples, wsh : shared parameters.

Reconstruction (auto-encoder) task:

Jr (D;w′ = {wsh,wr}) =
l+u∑
i=1

Cr (R(xi ;w′),xi) .

Supervised task:

Js(D;w = {wsh,ws}) =
l∑

i=1

Cs(M(xi ;w),yi) .

Weighted tasks combination

J (D; {wsh,ws,wr}) = λs · Js(D; {wsh,ws}) + λr · Jr (D; {wsh,wr}) .

λs, λr ∈ [0, 1]: importance weight, λs + λr = 1.

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 19/71
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Deep multi-task learning with evolving weights

Tasks combination with evolving weights
Weighted tasks combination:

J (D; {wsh,ws,wr}) = λs · Js(D; {wsh,ws}) + λr · Jr (D; {wsh,wr}) .

λs, λr ∈ [0, 1]: importance weight, λs + λr = 1.

Problem
How to fix λs, λr ?

Intuition
At the end of the training, only Js should matters

Tasks combination with evolving weights (our contribution)

J (D; {wsh,ws,wr}) = λs(t) · Js(D; {wsh,ws}) + λr (t) · Jr (D; {wsh,wr}) .

t : learning epochs, λs(t), λr (t) ∈ [0, 1]: importance weight, λs(t) + λr (t) = 1.

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 20/71
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Tasks combination with evolving weights

J (D; {wsh,ws,wr}) = λs(t)·Js(D; {wsh,ws})+λr (t)·Jr (D; {wsh,wr}) .
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{
λr (t) = exp(−t

σ
) , σ : slope

λs(t) = 1− λr (t)
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Tasks combination with evolving weights: Optimization

Tasks combination with evolving weights (our contribution)

J (D; {wsh,ws,wr}) = λs(t) · Js(D; {wsh,ws}) + λr (t) · Jr (D; {wsh,wr}) .

t : learning epochs, λs(t), λr (t) ∈ [0, 1]: importance weight, λs(t) + λr (t) = 1.

Algorithm 1 Training our model for one epoch

1: D is the shuffled training set. B a mini-batch.
2: for B in D do
3: Make a gradient step toward Jr using B (update w′)
4: Bs ⇐ labeled examples of B,
5: Make a gradient step toward Js using Bs (update w)
6: end for

[R.Caruana 97, J.Weston 08, R.Collobert 08, Z.Zhang 15]
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Deep multi-task learning with evolving weights

Experimental protocol

Objective: Compare Training DNN using different approaches:

No pre-training (base-line)
With pre-training (Stairs schedule)
Parallel transfer learning (proposed approach)

Studied evolving weights schedules:

0

1
Stairs (Pre-training) Linear

start t1
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1
Linear until t1

start

Exponential
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Deep multi-task learning with evolving weights

Experimental protocol

Task: Classification (MNIST)
Number of hidden layers K : 1, 2, 3, 4.
Optimization:

Epochs: 5000
Batch size: 600
Options: No regularization, No adaptive learning rate

Hyper-parameters of the evolving schedules:
t1: 100 σ: 40

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 24/71
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Deep multi-task learning with evolving weights

Shallow networks: (K = 1, l = 1E2)
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Shallow networks: (K = 1, l = 1E3)
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Deep networks: exponential schedule (l = 1E3)
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Deep multi-task learning with evolving weights

Conclusion

An alternative method to the pre-training.
Parallel transfer learning with evolving weights

Improve generalization easily.
Reduce the number of hyper-parameters (t1, σ)
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Deep multi-task learning with evolving weights

Perspectives

Optimization
Extension to structured output problems

Train cost = supervised task
+ Input unsupervised task
+ Output unsupervised task
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My PhD work

1 S. Belharbi, R.Hérault, C. Chatelain, S. Adam, Deep multi-task learning
with evolving weights, in conference: European Symposium on Artificial
Neural Networks (ESANN), 2016

2 S. Belharbi, C. Chatelain, R.Hérault, S. Adam, A regularization scheme
for structured output problems: an application to facial landmark
detection. 2016. submitted to Pattern Recognition journal (RP). ArXiv:
arxiv.org/abs/1504.07550

3 S. Belharbi, R.Hérault, C. Chatelain, R. Modzelewski, S. Adam, M. Chastan,
S. Thureau, Spotting L3 slice in CT scans using deep convolutional
network and transfer learning. To be submitted to Medical Analysis journal.
2016.
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A regularization scheme for structured output problems

Traditional Machine Learning Problems

f : X → y
Inputs X ∈ Rd : any type of input

Outputs y ∈ R for the task: classification, regression, . . .

Machine Learning for Structured Output Problems

f : X → Y
Inputs X ∈ Rd : any type of input

Outputs Y ∈ Rd ′
,d ′ > 1 a structured object (dependencies)

See C. Lampert slides.
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A regularization scheme for structured output problems

Data = representation (values) + structure (dependencies)

Text: part-of-speech
tagging, translation speech� text

Protein folding Image

Structured data
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A regularization scheme for structured output problems

Approaches that Deal with Structured Output Data
I Kernel based methods: Kernel Density Estimation (KDE)

I Discriminative methods: Structure output SVM

I Graphical methods: HMM, CRF, MRF, . . .

Drawbacks
Perform one single data transformation
Difficult to deal with high dimensional data

Ideal approach
I Structured output problems
I High dimension data
I Multiple data transformation (complex mapping functions)

Deep neural networks?
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x1
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x3
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Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3 Hidden layer 4

y1

y2

y3

Output layer

I High dimension data OK
I Multiple data transformation (complex mapping functions) OK
I Structured output problems NO
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Proposed framework
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Proposed framework
F : all the x, L: all the y, S: all supervised data

Input task

x̂ = Rin (x;win) = P ′
in (x̃ = Pin (x;wcin) ;wdin) ,

Jin(F ;win) =
1

cardF
∑
x∈F
Cin(Rin(x;win),x) .

Output task

ŷ = Rout (y;wout) = P ′
out (ỹ = Pout (y;wcout) ;wdout) ,

Jout(L;wout) =
1

cardL
∑
y∈L
Cout(Rout(y;wout),y) .

Main task

ŷ =M (x;wsup) = P ′out (m (Pin (x;wcin) ;ws) ;wdout) ,

Js(S;wsup) =
1

cardS
∑

(x ,y)∈S

Cs(M(x ;wsup), y) .
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Tasks combination

J (D;w) = λsup(t) ·Js(S;wsup)+λin(t) ·Jin(F ;win)+λout(t) ·Jout(L;wout) ,
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Figure 5: Linear evolution of the importance weights during training.
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Framework training

Algorithm 2 Training our framework for one epoch

1: D is the shuffled training set. B a mini-batch.
2: for B in D do
3: BS ⇐ examples of B that contain both (x,y)
4: BF ⇐ all the x samples of B
5: BL ⇐ all the y samples of B
6: Update win:

→ Make a gradient step toward Jin using BF
7: Update wout :

→ Make a gradient step toward Jout using BL
8: Update wsup:

→ Make a gradient step toward Js using BS
9: Update λsup, λin and λout

10: end for
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Framework evaluation

Task: Facial landmark detection. Localize 68 points (x,y).
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Experiments: setup

Datasets: LFPW (1035 images), HELEN (2330 images)
Architecture: MLP with 4 hidden layers: 1025, 2500, 136,
64.
In: 50x50. Output: 68x2
Data augmentation, no data augmentation
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Experiments: Results (No data augmentation)
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Figure 7: MSE during training epochs over HELEN train set using
different training setups for the MLP (no augmentation).
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Experiments: Results (No data augmentation)
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Figure 8: MSE during training epochs over HELEN valid set using
different training setups for the MLP (no augmentation).
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Experiments: Results (No data augmentation)

0.
01

0.
02

0.
05

0.
07

0.
09

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

NRMSE

0.10

0.20

0.30

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Da
ta
 p
ro
po

rt
io
n

CDF NRMSE: mean shape, CDF(0.1)=30.804%, AUC=68.787%
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Cumulative distribution function (CDF) of NRMSE over LFPW test set.

Figure 9: CDF curves of different configurations on LFPW.
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Experiments: Results (No data augmentation)
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Cumulative distribution function (CDF) of NRMSE over HELEN test set.

Figure 10: CDF curves of different configurations on HELEN.
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Experiments: Results (With data augmentation)

Table 1: MSE over LFPW: train and valid sets, at the end of training with and without data
augmentation.

No augmentation With augmentation
MSE train MSE valid MSE train MSE valid

Mean shape 7.74× 10−3 8.07× 10−3 7.78× 10−3 8.14× 10−3

MLP 3.96× 10−3 4.28× 10−3 - -
MLP + in 3.64× 10−3 3.80× 10−3 1.44× 10−3 2.62× 10−3

MLP + out 2.31× 10−3 2.99× 10−3 1.51× 10−3 2.79× 10−3

MLP + in + out 2.12 × 10−3 2.56 × 10−3 1.10 × 10−3 2.23 × 10−3
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Experiments: Results (With data augmentation)

Table 2: AUC and CDF0.1 performance over LFPW test dataset with and without data
augmentation.

No augmentation with augmentation
AUC CDF0.1 AUC CDF0.1

Mean shape 68.78% 30.80% 77.81% 22.33%
MLP 76.34% 46.87% - -
MLP + in 77.13% 54.46% 80.78% 67.85%
MLP + out 80.93% 66.51% 81.77% 67.85%
MLP + in + out 81.51% 69.64% 82.48% 71.87%

Table 3: AUC and CDF0.1 performance over HELEN test dataset with and without data
augmentation.

No augmentation With augmentation
AUC CDF0.1 AUC CDF0.1

Mean shape 64.60% 23.63% 64.76% 23.23%
MLP 76.26% 52.72% - -
MLP + in 77.08% 54.84% 79.25% 63.33%
MLP + out 79.63% 66.60% 80.48% 65.15%
MLP + in + out 80.40% 66.66% 81.27% 71.51%
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Experiments: Visual results

Figure 11: Examples of prediction on LFPW test set. For visualizing errors, red segments
have been drawn between ground truth and predicted landmark. Top row: MLP. Bottom
row: MLP+in+out. (no data augmentation)

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 48/71



images/logos

A regularization scheme for structured output problems

Experiments: Visual results

Figure 12: Examples of prediction on HELEN test set. Top row: MLP. Bottom row:
MLP+in+out. (no data augmentation)
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Conclusion

Generic regularization scheme for structured output problems
based on transfer learning
Exploit input/output unlabeled data
Speedup convergence and improve generalization
Code at github:
https://github.com/sbelharbi/structured-output-ae
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Perspectives

Evolve the importance weight according to the train/validation
error.
Explore other evolving schedules (toward automatic schedule)
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Spotting L3 slice in CT scans using convolutional network

My PhD work

1 S. Belharbi, R.Hérault, C. Chatelain, S. Adam, Deep multi-task learning
with evolving weights, in conference: European Symposium on Artificial
Neural Networks (ESANN), 2016

2 S. Belharbi, C. Chatelain, R.Hérault, S. Adam, A regularization scheme
for structured output problems: an application to facial landmark de-
tection. 2016. submitted to Pattern Recognition journal (PR). ArXiv:
arxiv.org/abs/1504.07550

3 S. Belharbi, R.Hérault, C. Chatelain, R. Modzelewski, S. Adam, M. Chastan,
S. Thureau, Spotting L3 slice in CT scans using deep convolutional
network and transfer learning. To be submitted to Medical Image Analysis
journal. 2016.
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Spotting L3 slice in CT scans using convolutional network

The problem: L3 slice localization

L3 slice

Figure 13: Finding the L3 slice within a whole CT scan.

→ Over a dataset of 642 CT scans, we obtained an average localization error
of 1.82 slice (< 5mm).
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The problem: L3 slice localization

Informal statement
Given a CT scan of a part of a body, find the slice which corresponds to the L3
slice from thousands of slices.
The L3 slice contains the 3rd lumbar vertebra.

Difficulties
Inter-patients variability.
Visual similarity of the L3 slice.
The need to use the context to localize the L3 slice.

=⇒ Machine Learning
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Possible approaches

Classification (discrete value)
Classify each slice for: “L3” or “Not L3”:

Simple, ,
No context, /

Sequence labeling

Label all the slices (vertebrae): L1, L2, L3, . . . :

Global analysis: context, ,
Existing work with promising results, ,
Requires labeling every slice, /

Regression (real value)

Predict the height (position) of the L3 slice inside the CT scan:

Global analysis: context, ,
Requires labeling only the L3 slice position, ,
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Spotting L3 slice in CT scans using convolutional network

Possible approaches: Difficulties

Figure 14: Two slices from the same patient: a L3 (up) and a non L3
(L2) (down). The similar shapes of both vertebraes prevent from taking
a robust decision given a single slice.
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Regression for L3 detection

Which model?
Deep learning, Convolutional neural network (CNN).
No manual feature extraction.
State of the art in vision.
Requires fixed input size (when using dense layers).

Some numbers . . .
Input space: 1 scan = N × 512× 512︸ ︷︷ ︸

Problem 1: large input space

, with

400 < N < 1200.
Dataset with annotated L3 position: 642 patients︸ ︷︷ ︸

Problem 2: few data

. (L3CT1

dataset)
Variability︸ ︷︷ ︸

Problem 3: Different input size

of the height of each scan.
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Regression for L3 detection

Problem 1: Input dimension space
131M inputs for one example (large input dimension):
=⇒ Frontal or lateral Maximum Intensity Projection (MIP).
512× 512× N =⇒ 512× N.
Conserves pertinent information (skeletal structure)
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Regression for L3 detection

Problem 2: Few data (642 patients) [1]
Train CNN from scratch→ poor results.
=⇒ Use pre-trained CNNs over large datasets
Alexnet, GoogleNet, VGG16, VGG19, . . . for classification
Pre-trained models over ImageNet: 14 millions of natural images [Fei-Fei
and Russakovsky 2013].
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Regression for L3 detection
Problem 2: Few data (642 patients) [2]
=⇒ Transfer learning
Exploit pre-trained filters over natural images, Next, refine them over L3 detection
task.

Figure 15: System overview. Layers Ci are Convolutionnal layers, while FCi denote Full
Connected layers. Convolution parameters of previously learnt ImageNet classifier are used as
initial values of corresponding L3 regressor layers to overcome the lack of CT examples
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Regression for L3 detection
Problem 3: Different input size

Classical problem
Use sliding window technique
Use post-processing

Figure 16: Examples of normalized frontal MIP images with the L3 slice position.

LITIS lab., Apprentissage team - INSA de Rouen, France Deep learning 61/71



images/logos
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Regression for L3 detection
Problem 3: Different input size

Classical problem
Use sliding window technique
Use post-processing

Figure 17: System overview describing the three important stage of our approach : MIP
transformation, TL-CNN prediction, and post processing.
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Regression for L3 detection
Problem 3: Different input size

Classical problem
Use sliding window technique
Use post-processing: correlation
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Figure 18: [left]: CNN output sequence obtained using for H = 400 and a = 50 on a test CT scan.
The sequence contains the typical straight line of slope −1 centered on the L3 (the theoretical line is
plotted in green), surrounded by random values. [right]: correlation between the CNN output
sequence and the theoretical. The maximum of correlation indicates the position of the L3.
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Regression for L3 detection: Quantitative results
Cross-validation:

CNN4 Alexnet VGG16 VGG19 Googlenet
fold 0 2.85± 2.37 2.21± 2.11 2.06± 4.39 1.89± 1.77 1.81± 1.74
fold 1 3.12± 2.90 2.44± 2.41 1.78± 2.09 1.96± 2.10 3.84± 12.86
fold 2 3.12± 3.20 2.47± 2.38 1.54± 1.54 1.65± 1.73 2.62± 2.52
fold 3 2.98± 2.38 2.42± 2.23 1.96± 1.62 1.76± 1.75 2.22± 1.79
fold 4 1.87± 1.58 2.69± 2.41 1.74± 1.96 1.90± 1.83 2.20± 2.20
Average 2.78± 2.48 2.45± 2.42 1.82 ± 2.32 1.83± 1.83 2.54± 4.22

Table 4: Error expressed in slice over all the folds using different models: CNN4 (Homemade model),
and Alexnet/VGG16/VGG19/GoogleNet (Pre-trained models).
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Regression for L3 detection: Qualitative results

Localization error: 0 coupes.
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Spotting L3 slice in CT scans using convolutional network

Regression for L3 detection: Qualitative results

Localization error: 6 coupes.
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Regression for L3 detection: Evaluation time

Number of parameters Average processing time (seconds/CT scan)
CNN4 55 K 04.46
Alexnet 2 M 06.37
VGG16 14 M 13.28
VGG19 20 M 16.02
GoogleNet 6 M 17.75

Table 5: Number of parameters vs. evaluation time over a GPU (K40).

Can be speedup more by increasing the window stride (without loosing in
performance).

VGG16:
stride=1: ∼ 13 seconds/CT scan with a an error of 1.82 ± 2.32.
stride=4: ∼ 02 seconds/CT scan with a an error of 1.91 ± 2.69.
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Regression for L3 detection: CNN vs. Radiologists

Setup
1 New evaluation set: 43 CT scans annotated by the same reference

radiologist (who annotated the L3CT1 dataset).
2 Ask 3 other radiologists to localize the L3 slice.
3 Perform this experiment twice.

Errors (slices) / operator CNN4 VGG16 Ragiologist #1 Radiologist #2 Radiologist #3
Review1 2.37± 2.30 1.70± 1.65 0.81± 0.97 0.72± 1.51 0.51± 0.62
Review2 2.53± 2.27 1.58± 1.83 0.77± 0.68 0.95± 1.61 0.86± 1.30

Table 6: Comparison of the performance of both the automatic systems and radiologists.
The L3 annotations given by the reference radiologist vary between the two reviews.
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Regression for L3 detection: Conclusion

Interesting results.
Adapted pipeline: pre-processing, CNN, post-processing.
Use of transfer learning alleviates the need of large training
set.
Generic framework: can be easily adapted for detecting
other subjects given the required annotation.
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My PhD work

1 S. Belharbi, R.Hérault, C. Chatelain, S. Adam, Deep multi-task learning
with evolving weights, in conference: European Symposium on Artificial
Neural Networks (ESANN), 2016

2 S. Belharbi, C. Chatelain, R.Hérault, S. Adam, A regularization scheme
for structured output problems: an application to facial landmark
detection. 2016. submitted to Pattern Recognition journal (PR). ArXiv:
arxiv.org/abs/1504.07550

3 S. Belharbi, R.Hérault, C. Chatelain, R. Modzelewski, S. Adam, M. Chastan,
S. Thureau, Spotting L3 slice in CT scans using deep convolutional
network and transfer learning. To be submitted to Medical Image Analysis
journal (MIA). 2016.
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Questions

Thank you for your attention,

Questions?

soufiane.belharbi@insa-rouen.fr
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