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Hyperspectral imaging is the fusion of 

spectrometry and imaging 

Spectrometry Imaging 

𝜆  

Light Wavelength in nm 

Emission (or absorption) spectrum 

800 700 600 500 400 300 

+ 



RGB imaging mimics the 

Human Visual System 

3 large bands to get chrominance 

Short, Medium 

and Long retina 

cones 



Multi/Hyper-spectral imaging goes beyond 

Full spectrum (a lot of narrow bands) 

at every pixel 

 



HSI mixes spatial and spectral information 

Classify several materials spatially on an image thanks to 

their unique spectral signature (« fingerprint »). 



Applications 

Microscopy, Spectroscopy 

 

Counterfeit detection 

 

Agriculture, Environmental Monitoring 

 

Biotechnology, Skin health, Endoscopy,... 

 

Surveillance, Security and Defense  

 

Non-contact quality control (e.g. Thin Films, 

Food, Pharmaceutical,...) 

... 



How is it usually done? 

spatial 

scanning 
dispersive 

element 

electronic 

sensor 

imec’s CMOS imager 

with Fabry-Perot filter 

chromatic 

scanning 
electronic 

sensor 



What are the issues? 

Spatially very restrictive (low resolution, line scanning...) 

 

Low speed and power consuming acquisition 

 

Big amount of data (e.g. 200 spectral bands for every pixel) 

to acquire, compress, transmit and store. 

 

Complex devices 



Why “Low Complexity” HD signals? 

The paradox 

Huge amount of data 

Big effort to acquire (expensive sensors) 

 

But high level of “redundancy” 

Big effort to compress (expensive DSP) 

 

$ m 

$ m 

example :  

K-sparse in Ψ 



HD Data is the ideal field for  

Compressed Sensing 

Compression at the acquisition (e.g. optically). 

 

𝑥 ∈ ℝ𝑁 
Signal 

Φ 
Optical (≈ linear) 

compressed sensing 

𝑦 ∈ ℝ𝑀 
measurements 

(sensor) 

Big gain both in the sensor and in the DSP. 



HD Data is the ideal field for  

Compressed Sensing 

Asymptotic theory  Works better at high dimensions 

 

Classically in CS theory if 𝐾 is the signal sparsity, 

 
𝑀

𝑁
≥ 𝐶

𝐾

𝑁
 log

𝑁

𝐾
 

 

For HD data 𝐾 increases slower than 𝑁 so,  

𝐾

𝑁
↓ and 

𝑴

𝑵
↓ 

 

Compression rate 

relative sparsity 



Compressed Sensing of High 

Dimensional Data 

How to? 



Model good signal priors 

Build and assess accurate signal model 

Use suited sparsity basis Ψ (wavelets, DCT,...) 

 

Combine sparsity bases Ψ = Ψ𝑥 ⊗Ψ𝑦 ⊗Ψ𝜆  

 

Append bases Ψ = [Ψ1, Ψ2, … ]  dictionaries 

 

Learn or design application specific dictionaries 

 

Use other low complexity priors e.g. TV, low rank (see later) 

 



Design efficient sensing 

In terms of physical implementation 

 

Physically (e.g. optically) feasible 

 

 

“Simple” efficient electronics 



In terms of mathematical properties 

Linear... Or not? (e.g. quantization); 

Fidel to reality; 

Restricted Isometry Property 
 

∃ 0 < 𝛿 < 1 such that for any “low complexity” (sparse, low rank,...) 

signal 𝑥,  

 

1 − 𝛿 𝑥 2 ≤ Φ𝑥 2 ≤ 1 + 𝛿 𝑥 2 

 

 

Design efficient sensing 

𝑦 = Φ𝑥 

𝑥 2 
𝑦 2 ≈ 𝑥 2 



In terms of numerical algorithms efficiency 

Φ = Bottleneck of reconstruction algorithms 
 

Sparse, block sparse, block diagonal, binary matrices, 

FFT, FWT,... 

 

NOT full random (e.g. Gaussian) matrices!! 

 

For a 512x512x32 hyperspectral volume (8M voxels) 

 sensing matrix with 246 entries i.e. 512 TB ! 

Design efficient sensing 



Reconstruct 

Use prior to build an optimization program 
Either convex relaxation and exact solution 

e.g. BPD 

 

N 

argmin
𝑥

𝑥 0  𝑠. 𝑡. Φ𝑥 − 𝑦 2 ≤ 𝜖 

 
Or non convex original problem, approximate solution 
using fast greedy algorithm 

e.g. L0-LASSO (IHT, OMP, CoSaMP,...) 

 

≈ argmin
𝑥

Φ𝑥 − 𝑦 2
2  𝑠. 𝑡. 𝑥 0 ≤ 𝐾 

non convex  hard to solve 

assume 𝑥 is sparse: low ℓ0 “norm” 



Reconstruct 

Use prior to build an optimization program 

Either exact solution of convex relaxation 

 e.g. BPDN 

argmin
𝑥

𝑥 1  𝑠. 𝑡. Φ𝑥 − 𝑦 2 ≤ 𝜖 

 

 

Or approximate solution of non convex problem 

 e.g. L0-LASSO 

≈ argmin
𝑥

Φ𝑥 − 𝑦 2
2  𝑠. 𝑡. 𝑥 0 ≤ 𝐾 

convex 

non convex 



Reconstruct 

Choose the solver 

 

Generic slow convex optimization (proximal algorithms,...) 

e.g. Douglas-Rashford, Chambolle-Pock 

 

 

Dedicated non convex fast greedy methods 

e.g. IHT, OMP, CoSaMP 

see Parikh and Boyd’s monograph 

for a good intro 



Reconstruct 

Implement: HD data is challenging 

 
Optimized libraries (BLAS, LAPACK,…),  

Randomization (power method, truncated SVD, ...) 

Parallel computing  

• Multi-core (e.g. OpenMP) 

• GPU (CUDA, OpenCL…) 

• HW accelerators (Xeon Phi,...) 

• Clusters (MPI…) 

... 



Some examples 



CS of a monochromatic image 

Sensor provides only 256x256 

measurements (
𝑀

𝑁
= 25%). 

We can play with optics. 

Log Scale Haar DWT coefficients 𝛼/ 𝛼  

𝜖 = 10−4 

𝐾

𝑁
≈ 4% 

512x512 Smile 

(𝐾, 𝜖) −compressible 



CS of a monochromatic image 

Choice of the sensing 
Spread Spectrum Random “Fourier” (DCT) Ensemble 

Φ =  𝑆 𝐹 𝐻 



CS of a monochromatic image 

Choice of the sensing 
Spread Spectrum Random “Fourier” (DCT) Ensemble 

Φ =  𝑆 𝐹 𝐻 

 

 Diagonal ±1 

“spread spectrum” 

DCT Random 

selection 



CS of a monochromatic image 

Choice of the sensing 
Spread Spectrum Random “Fourier” (DCT) Ensemble 

Φ =  𝑆 𝐹 𝐻 

 

 

 

Good math property if 
𝑀

𝑁
 = 0.25 ≥ 𝐶

𝐾

𝑁
ln𝑁 ≈ 𝐶 0.66 

 

Diagonal ±1 

“spread spectrum” 

DCT Random 

selection 



CS of a monochromatic image 

Choice of the sensing 
Spread Spectrum Random “Fourier” (DCT) Ensemble 

Φ =  𝑆 𝐹 𝐻 

 

 

 

Good math property if 
𝑀

𝑁
 = 0.25 ≥ 𝐶

𝐾

𝑁
ln𝑁 ≈ 𝐶 0.49 

 

Diagonal ±1 

“spread spectrum” 

DCT Random 

selection 

Small (?) constant  

≈ 1 ? 

< 1 ? 

High  



CS of a monochromatic image 

Choice of the sensing 
Spread Spectrum Random “Fourier” (DCT) Ensemble 

Φ =  𝑆 𝐹 𝐻 

 

 

 

Good math property if 
𝑀

𝑁
 = 0.25 ≥ 𝐶

𝐾

𝑁
ln𝑁 ≈ 𝐶 0.49 

 

Numerically efficient  

(optically feasible?) 

Diagonal ±1 

“spread spectrum” 

DCT Random 

selection 

Small (?) constant  

≈ 1 ? 

< 1 ? 

High  

Let’s try anyway… 



CS of a monochromatic image 

Result : BPDN solved with CP 
“super-resolution”  

without CS (but with BPDN) 

Φ is a simple average over 4px blocks 

CS 

Φ is the SSRFE  

+18dB 

PSNR = 32dB PSNR = 50dB 



CS of a monochromatic image 

Result : 

“super-resolution”  

BPDN without CS CS 

Original 

Bi-cubic interpolation 

(not BPDN) 

blocks blurred perfect 



CS of a monochromatic image 

Result : 

“super-resolution”  

BPDN without CS CS 

Original 

Bicubic interpolation 

(not BPDN) 

blocks blurred perfect 

This is a good small & sparse toy example. 

More “natural” small (512x512) images  

are not sparse enough (Lena,…) 

 Works better when 𝑁 ↑ and 
𝐾

𝑁
↓ 



Reshape 

A discrete signal and in particular an image can 

also be mathematically treated as a matrix 

 

𝑥 ∈ ℝ𝑁 → 𝑋 ∈ ℝ𝑛1×𝑛2 

 



Low-Rank Prior 

Rank and Singular Value Decomposition (SVD) of 𝑋 ∈ ℝ𝑛1×𝑛2 

𝑋 = 𝑈𝑆𝑉∗ = 𝑢1 ⋯ 𝑢𝑛1

𝜎1   
 ⋱  
  𝜎𝑟

 

 0

𝑣1
∗

⋮
𝑣𝑛2
∗

 

 

 

= 𝜎𝑖𝑢𝑖𝑣𝑖
∗

𝑟

𝑖=1

 

 

Low rank means highly redundant (generalization of sparsity for matrices) 

 

Best rank 𝑟 approximation (LS) = SV hard thresholding or truncated SVD 

output unitary 

matrix singular values 

rank 𝑟 
input unitary 

matrix 

rank 1 

matrices 

∃ efficient algorithms e.g. Matlab svds(X,r) or approx. with randomization : 
D. Achlioptas, F. Mcsherry, Fast Computation of Low Rank Matrix Approximations, 2007 



Reshape 

A discrete signal and in particular an hyperspectral 

image can also be treated as a 3-ways tensor 

 

𝒳 ∈ ℝ𝑛1×𝑛2×𝑛3 

 



Tensors and Low Rank Prior 

Rank of a tensor : minimum 𝑟 such that there exists a decomposition 

𝒳 = 𝑎𝑖 ∘ 𝑏𝑖 ∘ 𝑐𝑖

𝑟

𝑖=1

 

 

The rank is NP-complete (J. Håstad 1990). 

Instead, we can use the “n-rank” i.e. rank of the n-unfolding matrix 𝑋 𝑛  

Unfolding: 

 

Exterior tensor 

product 

rank 1 

tensors  

𝑎𝑖 ∈ ℝ𝑛1 

𝑏𝑖 ∈ ℝ𝑛2 

𝑐𝑖 ∈ ℝ𝑛3 

𝑛1 𝑛2 

𝑛3 

𝒳 → 𝑋(1) ∈ ℝ𝑛1× 𝑛2𝑛3 

 → 𝑋(2) ∈ ℝ𝑛2× 𝑛3𝑛1 

 → 𝑋(3) ∈ ℝ𝑛3× 𝑛1𝑛2 

𝑛1 

𝑛2𝑛3 



Tensors and Low Rank Prior 

We would like to solve 

argmin
𝒳

 rank 𝒳    𝑠. 𝑡.   Φ𝒳 − 𝑦 ≤ 𝜖 

 

n-rank relaxation 

argmin
𝒳

 rank 𝑋 1 + rank 𝑋 2 + rank 𝑋 3    𝑠. 𝑡.   Φ𝒳 − 𝑦 ≤ 𝜖 

This problem is not convex and (like the ℓ0 minimization) combinatorial. 

 

Nuclear norm convex relaxation (analogy with ℓ1) 

rank 𝑋 = # 𝜎𝑖|𝜎𝑖 > 0  → 𝑋 ∗ = 𝜎𝑖
𝑖

 

 

argmin
𝒳

 𝑋 1 ∗
+ 𝑋 2 ∗

+ 𝑋 3 ∗
   𝑠. 𝑡.   Φ𝒳 − 𝑦 ≤ 𝜖 

 

NP-complete 



Tensors and Low Rank Prior 

We would like to solve 

argmin
𝒳

 rank 𝒳    𝑠. 𝑡.   Φ𝒳 − 𝑦 ≤ 𝜖 

 

n-rank relaxation 

argmin
𝒳

 rank 𝑋 1 + rank 𝑋 2 + rank 𝑋 3    𝑠. 𝑡.   Φ𝒳 − 𝑦 ≤ 𝜖 

This problem is not convex and (like the ℓ0 minimization) combinatorial. 

 

Nuclear norm convex relaxation (analogy with ℓ1) 

rank 𝑋 = # 𝜎𝑖|𝜎𝑖 > 0  → 𝑋 ∗ = 𝜎𝑖
𝑖

 

 

argmin
𝒳

 𝑋 1 ∗
+ 𝑋 2 ∗

+ 𝑋 3 ∗
   𝑠. 𝑡.   Φ𝒳 − 𝑦 ≤ 𝜖 

 

NP-complete 

OK … But why low rank? 



Tensors and Low Rank Prior 

Hyperspectral images are low rank : the source mixing model 

 

ℎ1 

ℎ2 

ℎ3 

ℎ𝜌=4 

𝜌 

𝑛3 

𝐻 𝜌 spectra, each with 𝑛3 spectral samples : the mixing matrix 

𝜌 

𝑛1𝑛2 

𝑆 𝑛1𝑛2 pixels, each with a concentration of the 𝜌 sources : the source matrix 

𝑋 3 = 𝐻𝑆𝑇 =  ℎ𝑖𝑠𝑖
𝑇

𝜌

𝑖=1

⇒  rank 𝒳 ≤ rank 𝑋 3 ≤ 𝜌 

Source image 

“pixel list” 

“materials” 

“materials” 

“wavelength” 



Rank in the spatial directions (𝑋 1 or 𝑋 2 ) may not be a good proxy for tensor 

rank and is not particularly relevant for natural images. 

Tensors and Low Rank Prior 

Same number of ‘degrees of freedom’ 𝐾 =  𝑟(𝑛1 + 𝑛2) 

𝑟 = 16, PSNR = 24.3dB  𝐾 = 16384, PSNR = 33dB  

Haar wavelets SVT 



Low Rank and Joint Sparse 
[M. Golbabee, P. Vandergheynst 2012] 

Joint sparsity of the unfolded tensor 𝑋 3  (in sparsity basis Ψ) 

 

Same support for wavelet transform of each spectral band 

(= union of supports of each spectral band). 

𝑛3 

𝑛1𝑛2 

𝑘 non zero columns 

Low-rank and joint sparse with the source mixing model : 

Source matrix is joint sparse (in the sparsity basis). 

𝜌 

𝑛1𝑛2 

Ψ −1(𝑆𝑇) 

Ψ −1 𝑋 3  



Low Rank and Joint Sparse 

Some theoretical results from Golbabee & Vandergheynst : 

Sparsity : 𝑋𝑣𝑒𝑐 0 = # 𝑥𝑖,𝑗|𝑥𝑖,𝑗 ≠ 0  (number of non zero entries) 

Convex relaxation 𝑋𝑣𝑒𝑐 1 =  |𝑥𝑖,𝑗|𝑖,𝑗   

 

Convex minimization for sparse signal (BPDN) 

 

argmin
𝑋

𝑋𝑣𝑒𝑐 1    𝑠. 𝑡.   Φ 𝑋 − 𝑦 ≤ 𝜖 

 

𝑀 ≤ 𝑂 𝐾 log
𝑛1𝑛2𝑛3

𝐾
= 𝑂 𝑘𝑛3 log

𝑛1𝑛2
𝑘

 

(for nice (sub)Gaussian Φ) 

NB : we note 𝑋 =  𝑋 3 = 𝑥𝑖,𝑗  

and assume Ψ = Id 



Low Rank and Joint Sparse 

Some theoretical results from Golbabee & Vandergheynst : 

Joint sparsity : 𝑋 𝑝,0 = # 𝑥.,𝑖| 𝑥.,𝑖 𝑝
> 0  (number of non zero columns) 

Convex relaxation 𝑋 2,1 =  𝑥𝑖 2𝑖   

 

Convex minimization for joint sparse signal 

 

argmin
𝑋

𝑋 2,1    𝑠. 𝑡.   Φ 𝑋 − 𝑦 ≤ 𝜖 

 

𝑀 ≥ 𝑂 𝑘 log
𝑛1𝑛2
𝑘

+ 𝑘𝑛3 ≈ 𝑂 𝑘𝑛3  

(for nice (sub)Gaussian Φ) 

 

 

 

 

 

 



Low Rank and Joint Sparse 

Some theoretical results from Golbabee & Vandergheynst : 

Low rank: rank(𝑋) = # 𝜎𝑖|𝜎𝑖 > 0  (number of non zero singular values) 

Convex relaxation 𝑋 ∗ =  𝜎𝑖𝑖   

 

Convex minimization for low rank signal 

 

argmin
𝑋

𝑋 ∗    𝑠. 𝑡.   Φ 𝑋 − 𝑦 ≤ 𝜖 

 

𝑀 ≥ 𝑂 𝑟 𝑛1𝑛2 + 𝑛3  

(for nice (sub)Gaussian Φ) 

 

 

 

 



Low Rank and Joint Sparse 

Some theoretical results from Golbabee & Vandergheynst : 

Convex minimization for low rank and joint sparse signal (one example) 

 

𝑋 = argmin
𝑋

𝑋 2,1 + 𝜆 𝑋 ∗    𝑠. 𝑡.   Φ 𝑋 − 𝑦 ≤ 𝜖 

 

𝑀 ≥ 𝑂 𝑘 log
𝑛1𝑛2
𝑘

+ 𝑘𝑟 + 𝑛3𝑟  

(for nice (sub)Gaussian Φ) 

 

Error bound 

𝑋 − 𝑋 
𝐹
≤ 𝜅0

′
𝑋 − 𝑋𝑟,𝑘 2,1

𝑘 
+

𝑋 − 𝑋𝑟,𝑘 ∗

2𝑟 
+ 𝜅1

′ 𝜖 

 
if not exactly 

joint-sparse 
if not exactly 

low rank 

if noisy 

measurements 



Low Rank and Joint Sparse 

Demo example 512x512x32 

 
Block diagonal sensing matrix Φ = Φ ⊗ Idn3 

Where Φ  is the SSRFE (applied spatially) with 
𝑚

𝑛1𝑛2
= 25% 

No spectral mixing ≈ no dispersive optical element. 

quite far from full Gaussian. 

 
Generated (𝑘, 𝜖) −joint-compressible low rank HS image (from smile). 

With 𝑟 = 6 and 
𝑘

𝑛1𝑛2
= 4% for 𝜖 = 10−4 



Low Rank and Joint Sparse 

Demo example 512x512x32 (target) 

 



Low Rank and Joint Sparse 

Demo example 512x512x32 (reconstruction) 

 

PSNR = 43,5dB 



Source Separation 
[M. Golbabee, S. Arberet, P. Vandergheinst 2012] 

There exist extensive spectral databases with spectra 

associated to a lot of materials. 

 

We can use a subset of these databases as a dictionary for 

sparsity prior. 

 

𝑋 = 𝑆𝐻𝑇 

known spectral 

database 

∈ ℝ𝑛3×𝜌 

unknown  

concentration 

Image 

∈ ℝ𝑛1𝑛2×𝜌 



Source Separation 
[M. Golbabee, S. Arberet, P. Vandergheinst 2012] 

Modified reconstruction model: 

 

𝑦 = Φ𝑋𝑣𝑒𝑐 = Φ 𝑆𝐻𝑇
𝑣𝑒𝑐 = Φ H⊗ Id𝑛1𝑛2 𝑆𝑣𝑒𝑐 

 

 

 

argmin
𝑋

S𝑣𝑒𝑐 1    𝑠. 𝑡.   Φ′S𝑣𝑒𝑐 − 𝑦 ≤ 𝜖 

 

Φ’ ∈ ℝ𝑀×𝜌𝑛1𝑛2 ∈ ℝ𝑀 



Source Separation 
[M. Golbabee, S. Arberet, P. Vandergheinst 2012] 

When Φ = Φ ⊗ Idn3 (no spectral mixing) we can write 

𝑌 = Φ 𝑋 

 

 

Decorrelation before reconstruction (dimensionality reduction) 

𝑌∗ = 𝑌 𝐻† 𝑇
= Φ 𝑆 

 
∈ ℝ𝑚×𝜌 

No dependency in 𝐻 and smaller dimension. 

Much easier to handle in reconstruction algorithms! 

∈ ℝ𝑚×𝑛3 𝑀 = 𝑚 𝑛3  

∈ ℝ𝑀×𝑛1𝑛2 ∈ ℝ𝑚×𝑛1𝑛2 



Thank You ! 
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