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lyperspectral imaging is the fusion of
spectrometry and imaging

Spectrometry + Imaging

Emission (or absorption) spectrum
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RGB imaging mimics the

3 large bands to get chrominance

Short, Medium
and Long retina
cones




Multi/Hyper-spectral imaging goes beyond

spectrum (a lot of narrow bands)
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HSI mixes spatial and spectral information

Classify several materials spatially on an image thanks to
their unigue spectral signature (« fingerprint »).
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Applications

, Spectroscopy

Agriculture,

Biotechnology, , Endoscopy,...

Surveillance, Security and Defense

Non-contact quality control (e.g.
, Pharmaceutical,...)




How Is it usually done?

=

imec’s CMOS imager
with Fabry-Perot filter

chromatic  electronic
scanning sensor

—>
—>
spatial
scanning

dispersive electronic
element sensor



What are the ?

very restrictive (low resolution, line scanning...)
and consuming acquisition

(e.g. 200 spectral bands for every pixel)
to acquire, compress, transmit and store.

devices



Why *© " HD signals?
The paradox

Huge

- Big effort to (expensive sensors) $ \ <
But high level of * "

- Big effort to (expensive DSP) $ \ <

v
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HD Data Is the ideal field for
Compressed Sensing

Compression at the acquisition (e.g. optically).

x € RV o y € RM
Signal Optical (= linear) measurements
compressed sensing (sensor)

Big gain both in the sensor and in the DSP.



|ID Data iIs the fleld for

theory - Works

Classically in CS theory if K is the signal sparsity,

M K N
Compression rate < 7 = CN log (E)

\

relative sparsity

K increases slower than N so,

K
— | and
N



Compressed Sensing of High
Dimensional Data



Model good

and assess accurate signal
Use suited (wavelets, DCT,...)

sparsity bases ¥ = ¥, Q ¥, ® ¥,
bases ¥ = [¥;,¥,, ...] = dictionaries
application specific dictionaries

Use other low complexity priors e.g. TV,

(see later)



Design efficient sensing

In terms of physical implementation
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=>Physically (e.g. optically) feasible

=2 “Simple” efficient electronics




Design efficient

In terms of

... Or not? (e.g. quantization);
to reality;
estricted Isometry Property

30 < 6 < 1 such that for any “low complexity” (sparse, low rank,...)
signal x,

(1= &lxll* < lldx]l* < (1 + 8)lIxII?

= Ox
Y Iy11% = |lx]|?

11 r\

/



Design efficient

In terms of algorithms

=>» Sparse, block sparse, block diagonal, binary matrices,
FFT, FWT,...

-> random (e.g. Gaussian) matrices!!

For a 512x512x32 hyperspectral volume (8M voxels)
- sensing matrix with 246 entries i.e. 512 TB !




Reconstruct

Use prior to build an optimization program

assume x is sparse: low £, “norm”

arg min||x||, s.t.||Px —y|, < €
X



Reconstruct

Use prior to build an optimization program
Either solution of relaxation

e.g.
arg min||x||; s.t.||®Px —yl|l, <€
X

convex

Or solution of problem

non convex
e.g.

arg min||®x — y||5 s.t.|Ix]|i < K
X



Reconstruct

Choose the

Generic slow optimization (proximal algorithms,...)
e.g. Douglas-Rashford,

Dedicated non convex fast methods
e.g. OMP, CoSaMP



Reconstruct

HD data is challenging

(BLAS, LAPACK,...),

(power method, truncated SVD, ...)

« Multi-core (e.g. OpenMP)
 GPU (CUDA, OpenCL...)

« HW accelerators (Xeon Phi,...)
* Clusters (MPI...)

CISM



Some examples



CS of a monochromatic image

512x512 Smile Log Scale Haar DWT coefficients a/||«||

0

-2.5

Sensor provides only 256x256
measurements (% = 25%).

We can play with optics.

5
w10



CS of a monochromatic image

Choice of the sensing
Spread Spectrum Random “Fourier” (DCT) Ensemble



CS of a monochromatic image

Choice of the sensing
Spread Spectrum Random “Fourier” (DCT) Ensemble

Random DCT Diagonal +1
selection “spread spectrum”



CS of a monochromatic image

Choice of the sensing
Spread Spectrum Random “Fourier” (DCT) Ensemble

Random DCT Diagonal +1
selection “spread spectrum”

Good math property if% > C%lnN



CS of a monochromatic image

Choice of the sensing
Spread Spectrum Random “Fourier” (DCT) Ensemble

Random DCT Diagonal +1
selection “spread spectrum”

Good math property if% = 0.25 > C%lnN ~ (C 0.49

Small (?) constant High ®
~17?
<17?



CS of a monochromatic image

Choice of the sensing
Spread Spectrum Random “Fourier” (DCT) Ensemble

/LN

Random DCT Diagonal +1
selection “spread spectrum”

Good math property if% = 0.25 > C%lnN ~ (C 0.49

Small (?) constant High ®
Numerically efficient © ~ 17
;-.,;; .

~17
(optically feasible?) =3




CS of a monochromatic image
Result : BPDN solved with CP

“super-resolution”
without CS (but with BPDN) -GS
@ is a simple average over 4px blocks ® is the SSRFE

=)

+18dB

PSNR = 32dB PSNR = 50dB



CS of a monochromatic image

Bi-cubic interpolation “super-resolution”
(not BPDN) BPDN without CS




CS of a monochromatic image

This i1s a good small & sparse toy example.
More “natural” small (512x512) images

Bicubic ir are not sparse enough (Lena,...)
(not

CS
=» Works better when N T and % l




Reshape

A discrete signal and in particular an image can
also be mathematically treated as a matrix

x €ERN 5 X € R1Xn2



Low-Rank Prior

Rank and Singular Value Decomposition (SVD) of X € R™1*"2
o, _

vy
X=USV*=[U1 = Un,] ' :
o o

v - U

output unitary i \

matrix singular values input unitary
iy rank r matrix
= z Jiuivf"
i=1 rankl
matrices
means (generalization of sparsity for matrices)

Best rank r approximation (LS) = SV hard thresholding or

o —

3 efficient algorithms e.g. Matlab svds (X, r) or approx. with randomization :
D. Achlioptas, F. Mcsherry, Fast Computation of Low Rank Matrix Approximations, 2007



Reshape

A discrete signal and in particular an
can also be treated as a 3-ways tensor

x = Rnl XNy XNg




Tensors and Low Rank Prior

Rank of a tensor : minimum r such that there exists a decomposition

r
. \ J bi € an

=1 ! \N n

rank 1 c; ER™

Exterior tensor

The rank is (J. Hastad 1990).
Instead, we can use the “n-rank” i.e. rank of the n-unfolding matrix X,

n)ns

III"»"i@

N X(l) = Rnlx nons

- X(Z) € anx nanq
N X(3) € [Rngx nin,




Tensors and Low Rank Prior

We would like to solve
argm}}n rank(X) s.t. [|®X —y| <€

n-rank relaxation
arg m)}n rank(X(l)) + rank(X(z)) + rank(X(3)) s.t. ||PX —y|l <€

This problem is and (like the £, minimization) combinatorial.

(analogy with ¢,)
rank(X) = #{ailo; > 0} - IIXIl. = ) o,

i

argm)}n ||X(1) T ||X(2) T ||X(3) . st f[PX -yl <€



Tensors and Low Rank Prior

We would like to solve
argm}}n rank(X) s.t. [|®X —y| <€

n-rank relaxation
arg m)}n rank(X(l)) + rank(X(z)) + rank(X(3)) s.t. ||PX —y|l <€
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Tensors and Low Rank Prior

“materials”

Hyperspectral images are low rank : the model
p
<—>
1 ” Source image
! // / “materials”
h3 p% n1n2
m$ - “pixel list”
"2 LJ\K
N
| N,
hp:4 “‘wavelength
p spectra, each with n; spectral samples : the H
n,n, pixels, each with a concentration of the p sources : the S

p
X@3) = HST = z h;s/ = rank(X) < rank(X(g)) <p
i=1



Tensors and Low Rank Prior

Rank in the spatial directions (X;yor X(;)) may not be a good proxy for tensor
rank and is not particularly relevant for natural images.

r =16, PSNR = 24.3dB K =16384, PSNR = 33dB

SVT Haar wavelets
Same number of ‘degrees of freedom’ K = r(n; + n,)



Low Rank and Joint Sparse

[M. Golbabee, P. Vandergheynst 2012]

Joint sparsity of the unfolded tensor X3y (in sparsity basis V)

nin,
ngl

v

q—1
k non zero columns ¥ (X(3))

Same support for wavelet transform of each spectral band
(= union of supports of each spectral band).

Low-rank and joint sparse with the source mixing model :
Source matrix is joint sparse (in the sparsity basis).

nin,;

P

P



Low Rank and Joint Sparse

Some theoretical results from Golbabee & Vandergheynst :
Sparsity : [|Xpecllo = #{x; ;|x; ; # 0} (number of non zero entries)

Convex relaxation [|Xyecll; = X; ; |x; 1

Convex minimization for sparse signal (BPDN)

argmin|Xyeclly s.t. 000 =yl < e

M<O0 (K log (‘nl?:(zng)) =0 (kn3 log (%))

NB :we note X = X3y = (Xi,j)
and assume ¥ = Id



Low Rank and Joint Sparse

Some theoretical results from Golbabee & Vandergheynst :
sparsity : [|X|l,0 = #{X.,i|||x.,i||p > O} (number of non zero

Convex relaxation ||X|l,; = ¥;l1xl»

Convex minimization for sparse signal

argmin||X|lz; s.t. [®X) -yl <e

nin,

k

M=0 (k log( ) + kn3) ~ 0(kny)



Low Rank and Joint Sparse

Some theoretical results from Golbabee & Vandergheynst :
: rank(X) = #{o;|0; > 0} (number of non zero

Convex relaxation || X||, = }; g;

Convex minimization for signal

argmin||X]l. s.t. [|0X) -yl <e

M > 0(r(n1n2 + ng))



Low Rank and Joint Sparse

Some theoretical results from Golbabee & Vandergheynst :
Convex minimization for and signal (one example)

X =argminl[X|l;1 + X[, st loX) -yl <e

M=0 (k log (%) + kr + n3r)

~ P ||X_Xr:k||21 ||X_Xr'k * !
[X = X][ . < xo N + ki€
If noisy
If not exactly measurements

if not exactly

joint-sparse
J P low rank



Low Rank and Joint Sparse
Demo example 512x512x32

sensing matrix ® = & @ Id,,,

Where & is the (applied spatially) with n"; = 25%
172

No spectral mixing = no dispersive optical element.

Generated HS image (from smile).

k

nin;

With r = 6 and = 4% fore = 10~*




Low Rank and Joint Sparse

Demo example 512x512x32 (target)




Low Rank and Joint Sparse

Demo example 512x512x32 (reconstruction)

PSNR = 43,5dB



Source Separation

[M. Golbabee, S. Arberet, P. Vandergheinst 2012]

There exist extensive spectral with spectra
associated to a lot of materials.

We can use a subset of these databases as a

X =SHT
unknown spectral
concentration database
Image € R"3%P

€ Rnlnz Xp



Source Separation

[M. Golbabee, S. Arberet, P. Vandergheinst 2012]

Modified reconstruction model:

Y = DXpee = CD(SHT)vec — CD(H X Idnlnz)svec
e RM Ci)' e RMXxpnin;

arngin”Sveclll S. L. ”Cblsvec _37” <€



Source Separation

[M. Golbabee, S. Arberet, P. Vandergheinst 2012]

When ® = d ® Id,, (no spectral mixing) we can write
= ]RMxnlnz € RMXnin; Y = EISX

(M = mng) € R™M*N3

Decorrelation before reconstruction (dimensionality reduction)
v* =v(H?) = &S



Thank You !
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