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Intro to reinforcement learning



Machine learning relates to the capability of computers to learn
from examples without following explicitly defined rules.

Three types of machine learning tasks can be described.
» Supervised learning is the task of inferring a classification or
regression from labeled training data.
» Unsupervised learning is the task used to draw inferences from
datasets consisting of input data without labeled responses.

» Reinforcement learning (RL) is the task concerned with how
software agents ought to take actions in an environment in
order to achieve some objectives.



Motivation




Motivation

FIGURE — Application in robotics (credits : Jan Peters'team, Darmstadt)



Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.
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Objective

From experience in an environment,
an artificial agent
should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
St — St+1

Experience may be constrained
(e.g., not access to an accu-
rate simulator or limited data)



Introduction

» Experience is gathered in the form of sequences of
observations w € , actions a € A and rewards r € R :

wo, 40, 10, -5 dt—1, t—1, Wt

» In a fully observable environment, the state of the system
st € S is available to the agent.

S = Wt



Definition of an MDP

An MDP is a 5-tuple (S, A, T, R,~v) where :

> S is a finite set of states {1,..., Ns},
> Ais a finite set of actions {1,..., N4},
» T:8xAxS8 —[0,1] is the transition function (set of conditional

transition probabilities between states),

> R:SxAxS — R is the reward function, where R is a continuous set
of possible rewards in a range Rmax € RT (e.g., [0, Rmax]),

v

~ € [0,1) is the discount factor.

Transition Transition
function function
T(s0, a0, 51) T(s1,a1,52)

Reward
Policy function

R(s1,a1,%2)

Reward
Policy function

R(s0, a0, 51)



Performance evaluation

In an MDP (S, A, T, R,~), the expected return V7(s) : S — R (7 € I,
e.g., S — A) is defined such that

VT(s)=E [Zm ’Ykrt+k | st =s, 77} ) (1)

k=0

with v € [0, 1).

From the definition of the expected return, the optimal expected return
can be defined as

V*(s) = max V7 (s). (2)

and the optimal policy can be defined as :

T (s) = argg?_lax V7 (s). (3)
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Overview of deep RL
In general, an RL agent may include one or more of the following
components :

P> a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

» a direct representation of the policy 7(s) or (s, a), or

» a model of the environment in conjunction with a planning
algorithm.

Model-based
RL

Experience

Modef

RL Value/policy

Model
learning

Acting

Value-based Policy-based
RL RL

Planning

Deep learning has brought its generalization capabilities to RL.
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Overview

Function
Approximat:
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ors algorithms

Implementation :

Policies
Exploration /Exploitation
(e.g., via c-greedy)

Replay memory
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1
1
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1
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https ://github.com/VinF /deer
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Generalisation from Iimite_d data in
reinforcement learning
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Overview

To understand generalization in RL from limited data, we will
P recall the concept in supervised learning, and

» introduce the formulation in RL.

We'll then discuss how an agent can have a good generalization in
RL.
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Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset D s of learning samples (x, y) S (X,Y) into a

predictive model f(x | Dys).
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Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from
a dataset D s of learning samples (x,y) ~ (X, Y) into a

predictive model f(x | Dys).

Low bias

v

High bias

>

>

Low overfitting
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High overfitting
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Bias and overfitting in supervised learning
Assuming a random sampling scheme D;s ~ D;s, f(x | Dis) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by :

F=E E EL(Y.FX| Dis)). @)

where L(-,-) is the loss function. If L(y, ) = (y — y)?, the error
naturally gives the bias-variance decomposition :

DIEfS YBI«:X(Y — (X | Dis))? = 0?(x) + bias?(x), (5)

where
bias?(x) 2 (Ey(x(Y) — Ep,f(x | Dis))?,

#?(x) £ By (Y~ Eyu(¥))’ + oy (F(x | Dis) ~ Enof(x | Dis))

Internal variance Parametric variance = overfitting
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Bias and overfitting in supervised learning

This bias-variance decomposition highlights a tradeoff between

» an error directly introduced by the learning algorithm (the
bias) and
» an error due to the limited amount of data available (the
parametric variance).
Note that there is no such direct bias-variance decomposition for
loss functions other than the Ly loss! It is however always possible
to decompose the prediction error with a term related to the lack
of expressivity of the model (the bias) and a term due to the
limited amount of data (overfitting).
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Bias and overfitting in RL

The off-policy learning algorithm in RL can be seen as mapping a
dataset D ~ D into a policy mp (independently of whether the
policy comes from a model-based or a model-free approach) :

D—>7TD.

In an MDP, the suboptimality of the expected return can be
decomposed as follows :

E V()= V(s = (VT (5) - Vo ()

asymptotic bias

+ (V7= (s) = VT™(s)) |-

El
D~D

error due to finite size of the dataset Ds
referred to as overfitting
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How to obtain the best policy ?

N N
% of the % of the
error error due to
due to asymptotic
overfitting bias

FIGURE — Schematic representation of the bias-overfitting tradeoff.
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How to improve generalization 7
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How to improve generalization ?

We can optimize the bias-overfitting tradeoff thanks to the
following elements :

> an abstract representation that discards non-essential
features,

> the objective function (e.g., reward shaping, tuning the
training discount factor) and

» the learning algorithm (type of function approximator and
model-free vs model-based).
And of course, if possible :

» improve the dataset (exploration/exploitation dilemma in an
online setting)

More details : V Francois-Lavet, et al.”An introduction to deep
reinforcement learning”. Foundations and Trends in ML.
https://arxiv.org/abs/1811.12560
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1. Abstract representation

The appropriate level of abstraction plays a key role in the
bias-overfitting tradeoff and one of the key advantages of using a
small but rich abstract representation is to allow for improved
generalization.

» When considering many features on which to base the policy,
an RL algorithm may take into consideration spurious
correlations, which leads to overfitting.

> Removing features that discriminate states with a very
different role in the dynamics introduces a bias.

SO | s | 5@ (0,0)|(1,0)[(2,0) © 0 ®
@ | 5@ | 56 (0.1)|(1.1)|(2.1) OREORE®)
y
§ 5 | 50 | 5@ (0.2)[(1.2)|(2.2) OREORE®)
States Feature

Envi representation selection where
nvironment with a set of only the x-coordinate

features (x, y) has been kept

FIGURE — lllustration of the abstract representation.
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1. Abstract representation

In POMDPs, policies are based on a state representation built from
histories of observations, actions and rewards.

With H; = Q x (AX R xQ)t, H = 8 H¢, we consider a
t=0
mapping ¢ : H — ¢(H), where ¢(H) = {¢p(H)|H € H}.

» On the one hand, a mapping ¢ with a low cardinality |¢(H)]
reduces the risk of overfitting (M) < | AP0,

» On the other hand, when ¢ discards information from the
history, the state representation ¢(H) might depart from
sufficient statistics, which creates an asymptotic bias.
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2. Modifying the objective function

In order to improve the policy learned by a deep RL algorithm, one
can optimize an objective function that diverts from the actual
objective. By doing so, a bias is usually introduced but this can in
some cases help with generalization. The main approaches to
modify the objective function are either

» to modify the reward of the task to ease learning (reward

shaping), or
» tune the discount factor at training time.
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2. Modifying the objective function (online setting)

Motivation from neurosciences :

» Empirical studies of cognitive mechanisms in delay of
gratification : The capacity to wait longer for the preferred
rewards seems to develop markedly only at about ages 3-4
(“marshmallow experiment”).

In the online setting, the optimal tradeoff evolves as more
data is obtained. There is for instance an interest of increasing
the discount factor when more data of interest if gathered.
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Modifying the objective function (online setting)

Increasing the discount factor (e.g., in the DQN algorithm) from

40,
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FI1GURE — lllustration for the game g-bert of a discount factor ~y held fixed on
the right and an adaptive discount factor on the right.
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3. Choice of the learning algorithm and function
approximator selection

In general, an RL agent may include one or more of the following

components :

P a representation of a value function that provides a prediction

of how good is each state or each couple state/action,

» a direct representation of the policy 7(s) or (s, a), or

» a model of the environment in conjunction with a planning
algorithm.

Model-based
RL

Experience

Modef

RL Value/policy

Model
learning

Acting

Value-based Policy-based
RL RL

Planning

Deep learning has brought its generalization capabilities to RL.
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3. Choice of the learning algorithm and function
approximator selection

» The function approximator in deep learning characterizes how
the features will be treated into higher levels of abstraction. A
fortiori, it is related to feature selections (e.g., an attention
mechanism), etc.

» Depending on the task, finding a performant function
approximator is easier in either a model-free or a model-based
approach. The choice of relying more on one or the other
approach is thus also a crucial element to improve
generalization.
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3. Choice of the learning algorithm

The respective strengths of the model-free versus model-based
approaches depend on different factors.

> If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

» Second, a model-based approach requires working in
conjunction with a planning algorithm, which is often
computationally demanding.

» Third, for some tasks, the model of the environment may be
learned more efficiently due to the particular structure of the
task.
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3. Choice of the learning algorithm

St

FIGURE — lllustration of model-based.

at, It
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t+1, Ft4+1
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N
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3. Choice of the learning algorithm : a parallel with
neurosciences

In cognitive science, there is a dichotomy between two modes of
thoughts (D. Kahneman. (2011). Thinking, Fast and Slow) :

> a "System 1" that is fast and instinctive and

» a "System 2" that is slower and more logical.

FIGURE — System 1 FIGURE — System 2

In deep reinforcement, a similar dichotomy can be observed when
we consider the model-free and the model-based approaches.
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Best practices in deep RL



How to benchmark deep RL?

P> Test an algorithm's effectiveness with an average across a few
learning trials. If possible study the results with techniques
derived from significance testing.

Stochasticity plays a large role in deep RL, both from randomness
within initializations of neural networks and stochasticity in
environments. Results may vary significantly simply by changing
the random seed.
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How to benchmark deep RL?

» Do not to over-interpret the results.

It is possible that a hypothesis can be shown to hold for one or
several given environments and under one or several given set of
hyperparameters, but fail in other settings.
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How to benchmark deep RL?

» Ensure a fair comparison between learning algorithms.

Ensuring that a novel algorithm is indeed performing much better
requires proper scientific procedure when choosing such
hyperparameters

25



How to benchmark deep RL?

» When choosing metrics to report, it is important to select
those that provide a fair comparison.

Using the top-K trials is usually inadequate for fair comparisons.

26



Combining model-based and
model-free via abstract
representations
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Combining model-based and model-free via abstract
representations

Why are we interested in learning everything through one abstract
representation ?

» it can help enforce a good generalization,
planning is computationally efficient,
it facilitates interpretation of the decisions taken by the agent,

it enables strategies for transfer learning, and

vvyyy

it can be used to improve exploration.

More details : Combined Reinforcement Learning via Abstract
Representations, V. Francois-Lavet, Y. Bengio, D. Precup, J.
Pineau, 2018 (AAAI).
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Combined Reinforcement via Abstract Representations
(CRAR)

encoder

encoder

environment
@

environment

reward reward
model model
transitiol transitiol
model model
model-based model-based

FIGURE — lllustration of the integration of model-based and model-free
RL in the CRAR architecture.

The value function and the model are trained using off-policy data,
via the abstract representation and without auto-encoder.

20



Learning the value function

Training of the value function is done with DDQN :
YkDDQN =r++Q (e(s’; 0, ), argmax Q(e(s’; 0e), a;00); 0Q> ,
acA
The training is done by minimizing the loss
DDQN) 2
Lont(0e,00) = (Q(e(s; 0.), 2:00) — Y/ ) .

This loss trains the weights of both the encoder and the model-free
component.

40



Learning the model

We have one loss for learning the reward, one for the discount
factor and one for learning the transition :

‘Cp(eev ep) :’ r— p(e(S; 66)7 a 9/7) |27
Lg(0e,0g) = v — g(e(s: be), a; 0g) \2,
L:(0e,0:) =| (e(s; 0e) + T(e(s; 0e), a;0,) — e(s; 0e)) ]2 .

These losses train the weights of both the encoder and the
model-based components.

41



In practice, there is a pressure to decrease the amount of
information being represented.
In our model, we introduce :

La1(0e) = exp(—Calle(s1; be) — e(s2; 0e)[2);

where s; and s are random states stored in the replay memory and
C4 is a constant.

The risk of obtaining very large values for the features of the state
representation is avoided by the following loss that penalizes
abstract states that are out of an L., ball of radius 1 :

La2(0e) = max(|le(st; 0e) %) — 1,0).

The loss L4, called the representation loss, is a combination of
both losses.

Vi)



Simple labyrinth

Representation of one state for a labyrinth task

(without any reward).

-100

-200

FIGURE — 2D representation
using t-SNE (blue represents
states where the agent is on the
left part, green on the right part
and orange in the junction).

Estimated transitions (action 0, 1, 2 and 3); ——

F1GURE — The CRAR agent is able
to reconstruct a sensible
representation of its environment in
2 dimensions.
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Interpretability

Interpretability can mean that some features of the state
representation are distinctly affected by some actions. The
following optional loss makes the predicted abstract state change
aligned with the chosen embedding vector v(a) :

Einterpr(0e7 97) = —Cos (T(e(s; 96)7 a, 67’)0:”7 v(a)),

where cos stands for the cosine similarity.

Estimated transitions (action 0, 1, 2 and 3) -_—1
10 N K “ B
054 K - ’ \1 l
ol !

-10 -05 0.0 05 10

FIGURE — With enforcing Linterpr and v(ag) = [1, 0]
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Catcher

This environment has only a few important features
(i) the position of the paddle and »
(i) the position of the blocks. -

[state representation (action 0, action 1:_ © @ |

[state representation (action 0, action 1:_ O @ | = =
[Estimated transitions (action 0, action 1): — ]

[Estimated transitions (action 0, action 1): — ] 1.0

-
°
3

°

®
14
©

Beginning to end of trajectory

°
>

°

b

1 o o o e
°© o N u 3
0 8 & & &

stimated expected return

S
s
8
Estimated expected return
Beginning to end of trajectory

-0.25 5
-0.50 -0.50 3
0.2 0.2
-0.75 _07s
0.0 -1.00
0.0 -1.00

FI_GURE - N FIGURE — With interpretability loss :
Without interpretability loss. v(a®) = (1,1) and v(a®) = (-1, 1).
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Planning

The dynamics for some sequence of actions is estimated recursively
as follows for any t’ :

o — e(st; 0e), ift' =1t
v Xer—1 + T()?t/_]_,at/_l; 07—), ift/ >t

A set A* of best potential . f
. . . X2 3
actions is considered based on 2
Q%2 0q) (A" C A). AT
X2 K3
X3
G — %

K3
)AQ >A<3
X3

>?1 >A<2
K3
)?2 >A<3
K3

FIGURE — Expansion from
current state representation xg.
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Planning

The dynamics for some sequence of actions is estimated recursively
as follows for any t’ :

o — e(st; 0e), ift' =1t
v Xer—1 + T()?t/_]_,at/_l; 07—), ift/ >t

A set A* of best potential X3
actions is considered based on

Q5,3 0g) (A* C A).

FIGURE — Expansion from
current state representation xg.
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Planning
The dynamics for some sequence of actions is estimated recursively

as follows for any t’ :

o — e(st; 0e), ift' =1t
v Xer—1 + T()?t/_]_,at/_l; 07—), if t/ >t

A set A* of best potential
actions is considered based on

Q5,3 0g) (A* C A).

FIGURE — Expansion from
current state representation xg.
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We define recursively the depth-d estimated expected return as

P2, :6,) + (%, 2:65) max Q4 (Rey1,d),
Qd()?ta 3) —

ifd >0
Q& a;0y), ifd =0

od—3

FiGUurRE — Backup.
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We define recursively the depth-d estimated expected return as

P(Re,a:6,) + 8(%, a;6g) max Q4 (Re41, ),

QY (%, a) = ifd >0
Q(%e,a;04), if d =0

odfz Qd73

/@\®
\@/ %

@

@
T

FiGUurRE — Backup.
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Planning - summary

o — e(se; 0e), ift' =1t
v K1+ 7(Rp—1,ap0-1:60,), ift/ >t

P(%,2:0,) + 8(%e; 3 05) max QY (Rey1,d),
QY (%,a) = ifd>0

Q()A(t, a, 9;()7 ifd=0

To obtain the action selected at time t, we use a hyper-parameter D € N
and use a simple sum of the Q-values obtained with planning up to a

depth D :
D
plan = Z Qd
d=0

The optimal action is given by argmax Qp,an(xt, a).
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Meta-learning with limited off-policy data
The CRAR agent is successfully able to learn
from a small set of off-policy data (2 x 10° tuples)
in a complex distribution of tasks, while using
planning in an abstract state space.

R A
o AAEE o
R T e,

Average score per episode at test time

D=1
A ,_/\\,'\“.,.,.A\-.a"\/’\\.,“\.vvsﬁ —+— D=3
el —— D=6
—+— DDQN
=5
0 50 100 150 200 250

Number of epochs

FIGURE — Meta-learning score on a distribution of labyrinths where the
training is done with a limited number of transitions obtained off-line by
a random policy. 2 x 10% tuples, ~ 500 labyrinths.
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Another important challenge : transfer learning

FIGURE — Transfer learning between different renderings. Picture from
"Playing for Data : Ground Truth from Computer Games”, Richter, S.
and Vineet, V., et al
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Transfer learning with the CRAR agent

environment °

encoder

environment
@

encoder encoder

reward reward
model model
transitiol transitiol
model model
model-based model-based

FIGURE — The abstract state can be enforced to be the same for
semantically identical observations.



Transfer learning with the CRAR agent

N i o

FI1GURE — After the first 250 epochs, training and test are done on the
same distribution of tasks but the pixels have the opposite values.
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I
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000
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FIGURE — Without transfer FIGURE — With transfer



Conclusions
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Further ressources

» Richard Sutton and Andrew G. Barto. Reinforcement learning :
An introduction. Vol. 1. No. 1. Cambridge : MIT press, 1998.

» RL Course by David Silver on Youtube :
https ://www.youtube.com/watch ?v=2pWv7GOvuf0

» V Francois-Lavet, et al.”An introduction to deep
reinforcement learning”. Foundations and Trends in ML.
https://arxiv.org/abs/1811.12560
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Questions ?
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