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Exploring cells and quantifying cellular processes in vivo

Current performances of molecular imaging devices for small animals
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@ M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,”
Nature Reviews Drug Discovery, 2003



The lensless endoscope: an utltrathin device to image cells
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@ E. R. Andresen, S. Sivankutty, V. Tsvirkun, et al., “Ultrathin endoscopes based on multicore
fibers and adaptive optics: status and perspectives,” Journal of Biomedical Optics, 2016

@ S. Sivankutty, V. Tsvirkun, O. Vanvincq, et al., “Nonlinear imaging through a fermat’s
golden spiral multicore fiber,” Optics letters, 2018



Relaxing some constraints could accelerate the acquisition

Calibration 2D
Mirror galvanometers

Raster scanning ?
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Compressive sampling uses unstructured illumination patterns
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Raster scanning Compressive sampling
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The inverse problem is expressed as a minimization
’ Compressive sampling

y=®x+n

Estimation problem

& = argmin_|ly — ®z|3

@ lll-posed problems!



Adding priors reduces the set of feasible solutions for @&

r Compressive sampling

y=®x+n

Estimation problem

& = argmin_|ly — ®z|3

+p®(2)

A Add priors on ...

We assume that the wavelet representation of &, (¥''%), is sparse.



Adding priors reduces the set of feasible solutions for @&

Compressive sampling

y=®x+n

Estimation problem

& = argmin_|ly — ®z|3

+p®(2)

A Add priors on ...

= ||‘IIT:?:||1 is small. r-Redundant Discrete Wavelet Transform
o S TS|y issmall. ¥ =[vy v, v, ]" @l =9"s,



Adding priors reduces the set of feasible solutions for @&

r Compressive sampling

y=®x+n

Estimation problem

& = argmin_|ly — ®z|3
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£ Let's solve these minimizations!



Generalized Forward-Backward algorithm

& — argmin, [ly — ®2)[3+ p >, " S:2]l
f, differentiable 9=, 9i

Estimation

r = 1,v=1.8/L, L is the Lipschitz constant of Vf

- prox., [ﬁ:k_l — nyf(a”:k_l)}

minimize f

minimize g

@ H. Raguet, J. Fadili, and G. Peyré, “Generalized forward-backward splitting,” SIAM
Journal on Imaging Sciences, 2013



Generalized Forward-Backward algorithm

& — argmin, |ly — ®2)[3+ p X1, &7 S:2]l
f, differentiable 9=, 9i

Estimation

r > 1,v=1.8/L, L is the Lipschitz constant of Vf
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end
QASk = El ’wiSi-C

Ygi/w; [2§:k_1 - 37{'671 - ’Y/wlvf(:%k_l)] _:f:k

@ H. Raguet, J. Fadili, and G. Peyré, “Generalized forward-backward splitting,” SIAM
Journal on Imaging Sciences, 2013



Generalized Forward-Backward algorithm

& — argmin, [ly — ®2)[3+p >, &7 .2l
f, differentiable 9=, 9i

accuracy reached?
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@ H. Raguet, J. Fadili, and G. Peyré, “Generalized forward-backward splitting,” SIAM
Journal on Imaging Sciences, 2013



Choice of p based on cross-validation

Aim: choosing p such that &, ~ z, i.e., ||&, — |/2 is minimal.
Idea: if ® has “nice” properties,
&, — a2 < C|[®3, — ®als < OB, — ylo+]nl2), C>1.

computable!

Reconstruction set
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Observations
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Test set /
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@ P. Boufounos, M. F. Duarte, and R. G. Baraniuk, “Sparse signal reconstruction from noisy
compressive measurements using cross validation,” in 2007 IEEE/SP 14th Workshop on
Statistical Signal Processing, Madison, WI, USA, 2007, ISBN: 0001406108

@ R. Ward, “Compressed sensing with cross validation,” |EEE Transactions on Information

Theory, 2009



Choice of p based on cross-validation

Synthetic data - NV = 128 x 128 - BSNR 40 dB - 1 pattern - 20 trials - DWT

M = 2% and Myeqy = 28

SNR [dB]
Residual [|y;esq — Prest®|2




Choice of p based on cross-validation

Synthetic data - NV = 128 x 128 - BSNR 40 dB - 1 pattern - 20 trials - DWT
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Choice of p based on cross-validation

Synthetic data - NV = 128 x 128 - BSNR 40 dB - 1 pattern - 20 trials - DWT
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Synthetic experiment in CS framework

Synthetic data - N = 128 x 128 - BSNR 40 dB - M;c, = 2% - 5 trials - DWT
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Synthetic experiment in CS framework

Synthetic data - N = 128 x 128 - BSNR 40 dB - M;c, = 2% - 5 trials - DWT

Raster scanning CS: M = 210
(M = N) 6.25%




Slow acquisition - Slow reconstruction - High memory



Memory effect

Fast acquisition? -  Fast transformations? - Low memory?
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How does M and P influence the quality of &7

Synthetic data -

N =128 x 128 - BSNR 40 dB - Miest =0 -
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(=] o2}

IN

[N)

2 4 6 8 10 12 14
Number of measurements (log2)

20 trials -

DWT



A fast acquisition needs few changes of patterns
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Mirror galvanometer limitations: continuous trajectory & constant speed

Constant sampling frequency to collect observations



A fast acquisition needs few changes of patterns
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What is the optimal distance between two repetitions of the same
speckle?



Distance d between two illumination patterns
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Conclusion and perspectives

The lensless endoscope

Raster scanning

Strategies based on CS emm
\ acquisition time
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Exploring and imaging cells in vivo
' Resolution " Imaging depth

@ S. Guérit, S. Sivankutty, C. Scotté, et al., “Compressive sampling approach for image
acquisition with lensless endoscope,” ArXiv, 2018



