
The lensless endoscope:

a playground for acquisition schemes

based on compressed sensing principles

Stéphanie Guérit
Collaborators: S. Sivankutty, C. Scotte, J. A. Lee, H. Rigneault, and L. Jacques

ISPSeminar, 5th of June



www.khanacademy.org



www.khanacademy.org



www.futurity.org



Exploring cells and quantifying cellular processes in vivo

Current performances of molecular imaging devices for small animals
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q M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,”
Nature Reviews Drug Discovery, 2003



The lensless endoscope: an utltrathin device to image cells
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q E. R. Andresen, S. Sivankutty, V. Tsvirkun, et al., “Ultrathin endoscopes based on multicore
fibers and adaptive optics: status and perspectives,” Journal of Biomedical Optics, 2016
q S. Sivankutty, V. Tsvirkun, O. Vanvincq, et al., “Nonlinear imaging through a fermat’s
golden spiral multicore fiber,” Optics letters, 2018



Relaxing some constraints could accelerate the acquisition

Raster scanning

Calibration
Mirror galvanometers
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The lensless endoscope:
a playground for acquisition schemes

based on compressed sensing principles



Compressive sampling uses unstructured illumination patterns

Raster scanning

Calibration
Mirror galvanometers
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The inverse problem is expressed as a minimization

Compressive sampling

y = Φx+ n

Estimation problem
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Adding priors reduces the set of feasible solutions for x̂
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Generalized Forward-Backward algorithm
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q H. Raguet, J. Fadili, and G. Peyré, “Generalized forward-backward splitting,” SIAM
Journal on Imaging Sciences, 2013
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Choice of ρ based on cross-validation

Aim: choosing ρ such that x̂ρ ≈ x, i.e., ‖x̂ρ − x‖2 is minimal.

Idea: if Φ has “nice” properties,

‖x̂ρ − x‖2 ≤ C‖Φx̂ρ −Φx‖2 ≤ C(‖Φx̂ρ − y‖2︸ ︷︷ ︸
computable!

+‖n‖2), C > 1.

{y1, . . . , yM}
Observations

{y1, . . . , yMrec}
Reconstruction set

{y1, . . . , yMtest}
Test set

x̂ρ

(ytest,Φtest)

‖Φtestx̂ρ − ytest‖2

q P. Boufounos, M. F. Duarte, and R. G. Baraniuk, “Sparse signal reconstruction from noisy
compressive measurements using cross validation,” in 2007 IEEE/SP 14th Workshop on
Statistical Signal Processing, Madison, WI, USA, 2007, ISBN: 0001406108
q R. Ward, “Compressed sensing with cross validation,” IEEE Transactions on Information
Theory, 2009



Choice of ρ based on cross-validation

Synthetic data · N = 128× 128 · BSNR 40 dB · 1 pattern · 20 trials · DWT
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Choice of ρ based on cross-validation

Synthetic data · N = 128× 128 · BSNR 40 dB · 1 pattern · 20 trials · DWT
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Synthetic experiment in CS framework

Synthetic data · N = 128× 128 · BSNR 40 dB · Mtest = 28 · 5 trials · DWT
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Synthetic experiment in CS framework

Synthetic data · N = 128× 128 · BSNR 40 dB · Mtest = 28 · 5 trials · DWT

Raster scanning
(M = N)

CS: M = 210

6.25%
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12.5%
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25%



ÄPure CS

úMemory effect

Slow acquisition · Slow reconstruction · High memory



ÄPure CS

úMemory effect

Fast acquisition? · Fast transformations? · Low memory?



ÄPure CSúMemory effect
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How does M and P influence the quality of x̂?

Synthetic data · N = 128× 128 · BSNR 40 dB · Mtest = 0 · 20 trials · DWT



A fast acquisition needs few changes of patterns
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Mirror galvanometer limitations: continuous trajectory & constant speed

Constant sampling frequency to collect observations



A fast acquisition needs few changes of patterns

n

n

Ä

n

n

n

n

What is the optimal distance between two repetitions of the same
speckle?



Distance d between two illumination patterns
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Conclusion and perspectives

The lensless endoscope

Exploring and imaging cells in vivo
↗ Resolution ↗ Imaging depth

Raster scanning

Strategies based on CS
↘ acquisition time

or ↗ FOV

q S. Guérit, S. Sivankutty, C. Scotté, et al., “Compressive sampling approach for image
acquisition with lensless endoscope,” ArXiv, 2018


