The lensless endoscope:

a playground for acquisition schemes based on compressed sensing principles

Stéphanie Guérit

Collaborators: S. Sivankutty, C. Scotte, J. A. Lee, H. Rigneault, and L. Jacques

ISPSeminar, 5th of June

www.khanacademy.org

www.futurity.org

Exploring cells and quantifying cellular processes in vivo

Current performances of molecular imaging devices for small animals

e M. Rudin and R. Weissleder, "Molecular imaging in drug discovery and development," Nature Reviews Drug Discovery, 2003

[■] E. R. Andresen, S. Sivankutty, V. Tsvirkun, et al., "Ultrathin endoscopes based on multicore fibers and adaptive optics: status and perspectives," Journal of Biomedical Optics, 2016 ϵ S. Sivankutty, V. Tsvirkun, O. Vanvincq, et al., "Nonlinear imaging through a fermat's golden spiral multicore fiber," Optics letters, 2018

Relaxing some constraints could accelerate the acquisition

 $M = N = n \times n$ ວ

 $M < N$?

$\boldsymbol{\mathsf{Q}}$

The lensless endoscope: a playground for acquisition schemes based on compressed sensing principles

Compressive sampling uses unstructured illumination patterns

$$
\bm{y}=\bm{h}\otimes x+\bm{n}
$$

Compressive sampling

 $y = \Phi x + n$ $\Phi \in \mathbb{R}^{M \times N}$

The inverse problem is expressed as a minimization

◆ Ill-posed problems!

Adding priors reduces the set of feasible solutions for \hat{x}

\hat{I} Add priors on \hat{x} ...

We assume that the wavelet representation of \hat{x} , $(\Psi^T \hat{x})$, is sparse.

Adding priors reduces the set of feasible solutions for \hat{x}

 \hat{I} Add priors on \hat{x} ...

 \Leftrightarrow $\|\Psi^T \hat{x}\|_1$ is small. r-Redundant Discrete Wavelet Transform $\Leftrightarrow \quad \sum_{i=1}^r\|\pmb{\psi}^T\pmb{S}_i\hat{\pmb{x}}\|_1$ is small. $\pmb{\Psi}^T=\begin{bmatrix} \psi_1 & \psi_2 & \dots & \psi_r \end{bmatrix}^T, \;\pmb{\psi}_i^T=\pmb{\psi}^T\pmb{S}_i$

Adding priors reduces the set of feasible solutions for \hat{x}

$\mathbf{3}^8$ Let's solve these minimizations!

Generalized Forward-Backward algorithm

$$
\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{z}} \underbrace{\|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{z})\|_2^2}_{f, \text{ differentiable}} + \underbrace{\rho \sum_{i=1}^r \|\boldsymbol{\psi}^T \boldsymbol{S}_i \boldsymbol{z}\|_1}_{g = \sum_i g_i}
$$

Estimation

 $r = 1, \gamma = 1.8/L, L$ is the Lipschitz constant of ∇f

$$
\hat{\boldsymbol{x}}^{k} \leftarrow \text{prox}_{\gamma g} \underbrace{\left[\hat{\boldsymbol{x}}^{k-1} - \gamma \nabla f(\hat{\boldsymbol{x}}^{k-1}) \right]}_{\text{minimize } f}
$$

 \exists H. Raguet, J. Fadili, and G. Peyré, "Generalized forward-backward splitting," SIAM Journal on Imaging Sciences, 2013

Generalized Forward-Backward algorithm

$$
\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{z}} \underbrace{\|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{z})\|_2^2}_{f, \text{ differentiable}} + \underbrace{\rho \sum_{i=1}^r \|\boldsymbol{\psi}^T\boldsymbol{S}_i\boldsymbol{z}\|_1}_{g = \sum_i g_i}
$$

Estimation

$$
\begin{aligned} r &> 1, \gamma = 1.8/L, L \text{ is the Lipschitz constant of } \nabla f \\ \textbf{for } i &= 1 \textbf{ to } r \\ s_i^k \leftarrow s_i^{k-1} + \text{prox}_{\gamma g_i/w_i} \left[2\hat{\boldsymbol{x}}^{k-1} - s_i^{k-1} - \gamma/w_i \nabla f(\hat{\boldsymbol{x}}^{k-1}) \right] - \hat{\boldsymbol{x}}^k \\ \textbf{end} \\ \hat{\boldsymbol{x}}^k &= \sum_i w_i s_i^k \end{aligned}
$$

 \exists H. Raguet, J. Fadili, and G. Peyré, "Generalized forward-backward splitting," SIAM Journal on Imaging Sciences, 2013

Generalized Forward-Backward algorithm

 \exists H. Raguet, J. Fadili, and G. Peyré, "Generalized forward-backward splitting," SIAM Journal on Imaging Sciences, 2013

Aim: choosing ρ such that $\hat{x}_{\rho} \approx x$, *i.e.*, $\|\hat{x}_{\rho} - x\|_2$ is minimal. Idea: if Φ has "nice" properties,

$$
\|\hat{\bm{x}}_{\rho}-\bm{x}\|_2 \leq C \|\bm{\Phi}\hat{\bm{x}}_{\rho}-\bm{\Phi}\bm{x}\|_2 \leq C (\|\bm{\Phi}\hat{\bm{x}}_{\rho}-\bm{y}\|_2 + \|\bm{n}\|_2), \quad C>1.
$$

computable!

 $\boxed{\equiv}$ P. Boufounos, M. F. Duarte, and R. G. Baraniuk, "Sparse signal reconstruction from noisy compressive measurements using cross validation," in 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 2007, ISBN: 0001406108 \equiv R. Ward, "Compressed sensing with cross validation," IEEE Transactions on Information Theory, 2009

Choice of ρ based on cross-validation

Synthetic data \cdot $N = 128 \times 128 \cdot$ BSNR 40 dB \cdot 1 pattern \cdot 20 trials \cdot DWT

Choice of ρ based on cross-validation

Synthetic data \cdot $N = 128 \times 128 \cdot$ BSNR 40 dB \cdot 1 pattern \cdot 20 trials \cdot DWT

Choice of ρ based on cross-validation

Synthetic data $\cdot N = 128 \times 128 \cdot$ BSNR 40 dB \cdot 1 pattern \cdot 20 trials \cdot DWT

Synthetic experiment in CS framework

Synthetic data \cdot $N=128\times128\,\cdot$ BSNR 40 dB \cdot $M_{\text{test}}=2^8\,\cdot$ 5 trials \cdot DWT

Synthetic experiment in CS framework

Synthetic data \cdot $N=128\times128\,\cdot$ BSNR 40 dB \cdot $M_{\text{test}}=2^8\,\cdot$ 5 trials \cdot DWT

Slow acquisition · Slow reconstruction · High memory

Fast acquisition? · Fast transformations? · Low memory?

$$
\begin{aligned}\n\boldsymbol{y} &= \boldsymbol{\Phi}\boldsymbol{x} + \boldsymbol{n}, & \boldsymbol{\Phi} &= \boldsymbol{R}_{\Omega}\boldsymbol{H} \\
\boldsymbol{R}_{\Omega} &\in \mathbb{R}^{M \times N} & \Omega \subset \{1, \ldots, N\} \\
\boldsymbol{\mathcal{M}}_{\Omega_i} &\in \mathbb{R}^{N \times N} & \cup_i \Omega_i = \Omega\n\end{aligned}
$$

$$
\mathbf{y} = \mathbf{\Phi} \mathbf{x} + \mathbf{n}, \qquad \mathbf{\Phi} = R_{\Omega} \sum_{i=1}^{P} \mathbf{M}_{\Omega_i} \mathbf{H}_i
$$

$$
R_{\Omega} \in \mathbb{R}^{M \times N} \quad \Omega \subset \{1, \dots, N\}
$$

$$
\mathbf{M}_{\Omega_i} \in \mathbb{R}^{N \times N} \quad \cup_i \Omega_i = \Omega
$$

How does M and P influence the quality of \hat{x} ?

Synthetic data \cdot $N = 128 \times 128 \cdot$ BSNR 40 dB \cdot $M_{\text{test}} = 0 \cdot 20$ trials \cdot DWT

A fast acquisition needs few changes of patterns

Mirror galvanometer limitations: continuous trajectory & constant speed Constant sampling frequency to collect observations

A fast acquisition needs few changes of patterns

What is the optimal distance between two repetitions of the same speckle?

Distance d between two illumination patterns

 Ξ S. Guérit, S. Sivankutty, C. Scotté, et al., "Compressive sampling approach for image acquisition with lensless endoscope," ArXiv, 2018