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Introduction What is a C-arm ? 
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Introduction What is tomography ? 

Projections Volume 
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Introduction Two different problems 

 Soft tissue analysis 

• 3D diastole reconstruction 

• Beating motion = trouble 

 

 Functional analysis 

• 3D + time reconstruction 

• Whole cardiac cycle 

• Beating motion = information 

 

 In both cases 

• Respiratory motion = trouble  

=> Apnea 

5 
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Introduction  ECG-gating 
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Introduction Angular distribution of projections 
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30° 60° 90° 120° 150° 180° 210° 0° 

 packets of consecutive projections 

 Large gaps between packets 

 #Packets = #Cardiac cycles in acq. 
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Introduction Moving Shepp & Logan phantom 

 Sum of ellipsoids 

 Exact line-integral calculation 

 Modified to “beat” 

8 
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Introduction Angular distribution of projections 
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SART reconstructions from 60 projections, starting from zero 

10 packets of  

6 projections 

20 packets of  

3 projections 

30 packets of  

2 projections 

60 “packets” of  

1 projection 

More packets = Less artifacts 

#Packets = #Cardiac cycles in acquisition 

 

Fast beating heart 

Long acquisition 
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Introduction Angular distribution of projections 
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SART reconstructions from 60 projections, starting from ungated 

10 packets of  

6 projections 

20 packets of  

3 projections 

30 packets of  

2 projections 

More packets = Less motion blur 

5 packets of  

12 projections 
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Introduction Artifacts / Blur tradeoff 
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Undersampling artifacts 

Motion blurring 

-  Amount of data used  + 

ECG gated Ungated 

Tradeoff ? 
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Introduction State of the art in cardiac C-arm CT 

 Multiple sweep acquisitions 
• High image quality on a single phase 

• Motion-compensated reconstruction techniques 

• High dose 

• Long apnea (at least 12s, in practice around 20s) 

• High amount of contrast 

• Mostly used on animals as of today 

 
Lauritsch, Jan Boese, Lars Wigström, Herbert Kemeth, and Rebecca Fahrig. “Towards Cardiac C-Arm 

Computed Tomography.” IEEE Transactions on Medical Imaging 25, no. 7 (July 2006): 922–934. 

Prümmer, M., Joachim Hornegger, Guenter Lauritsch, Lars Wigström, Erin Girard-Hughes, and Rebecca 
Fahrig. “Cardiac C-Arm CT: A Unified Framework for Motion Estimation and Dynamic CT.” IEEE 
Transactions on Medical Imaging 28, no. 11 (November 2009): 1836–1849. 
doi:10.1109/TMI.2009.2025499. 

Girard, Erin E, Amin Al-Ahmad, Jarrett Rosenberg, Richard Luong, Teri Moore, Günter Lauritsch, Jan 
Boese, and Rebecca Fahrig. “Contrast-Enhanced C-Arm CT Evaluation of Radiofrequency Ablation 
Lesions in the Left Ventricle.” JACC. Cardiovascular Imaging 4, no. 3 (March 2011): 259–268. 
doi:10.1016/j.jcmg.2010.11.019. 
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Introduction State of the art in cardiac C-arm CT 

 Single sweep acquisitions 
• Compressed sensing techniques (ASD-POCS, PICCS) 

=> Regularized images 

• Long apnea (14s in a 2012 paper) and high heart rate (around 90 
bpm) 

• High amount of contrast (37 cc for a 10kg swine) 

 
Lauzier, Pascal Thériault, Jie Tang, and Guang-Hong Chen. “Time-Resolved Cardiac Interventional Cone-

Beam CT Reconstruction from Fully Truncated Projections Using the Prior Image Constrained 
Compressed Sensing (PICCS) Algorithm.” Physics in Medicine and Biology 57, no. 9 (May 7, 2012): 
2461–2476. doi:10.1088/0031-9155/57/9/2461. 

Chen, G.-H., P. Theriault-Lauzier, J. Tang, B. Nett, S. Leng, J. Zambelli, Z. Qi, et al. “Time-Resolved 
Interventional Cardiac C-Arm Cone-Beam CT: An Application of the PICCS Algorithm.” Medical 
Imaging, IEEE Transactions on 31, no. 4 (April 2012): 907 –923. doi:10.1109/TMI.2011.2172951. 
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Introduction The acquisition protocol 
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 Single breath hold 

 10.3 seconds 

 308 projections 

• 1024 * 792 pixels 

• 38 cm * 29 cm 

• 0.74 mm * 0.74 mm pixels 

 210 °(short scan) 

 About 60 cc of iodine 

 ECG-recording 

 

=> Nothing in the literature with similar constraints 
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3D compressed sensing AL + ADMM + TV 
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is the forward projection operator (Radon or X-ray transform) 

is the volume we seek 

is the gating operator 

 

 

 

 TV favors piecewise constant images 

 Real images are not piecewise constant 

 Regularization must remain limited 

𝑓 = arg min
𝑓

 𝐺 𝑅𝑓 − 𝑝  2
2 + 𝛼𝑇𝑉 𝑓  

𝑇𝑉 𝑓 =    ∇x𝑓 𝑣  2 +  ∇y𝑓 𝑣  
2

+  ∇z𝑓 𝑣  2

𝑉

𝑣=1

 

𝑅 
f 

𝐺 
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3D compressed sensing AL + ADMM + TV 
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3D compressed sensing AL + ADMM + TV 
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3D compressed sensing AL + ADMM + TV 

19 

Long axis Short axis 

S

Y

S

T

O

L

E

 

D

I

A

S

T

O

L

E

 



Cyril Mory - PhD Defense - February 2014 20 

3D compressed sensing AL + ADMM + Wavelets 
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 Daubechies wavelets 

 Ineffective on piecewise constant phantoms 

 Well suited to real images 

 Regularization can be strong 

𝑓 = arg min
𝑓

 𝐺 𝑅𝑓 − 𝑝  2
2 + 𝛼 𝑊𝑓 1  
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3D compressed sensing AL + ADMM + Wavelets 
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3D compressed sensing AL + ADMM + Wavelets 
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3D compressed sensing AL + ADMM + Wavelets 
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3D compressed sensing PICCS 

24 

 Prior Image Constrained Compressed Sensing 

 State-of-the-art method 

 SART to minimize data-attachment 

 Steepest descent for TV minimization 

 Prior = ungated FDK 

 No texture-erasing effect 

𝑓 = arg min
𝑓

 𝜇 𝐺 𝑅𝑓 − 𝑝  2
2 +  1 − 𝛼 𝑇𝑉 𝑓 + 𝛼𝑇𝑉 𝑓 − 𝑓∗  
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3D compressed sensing PICCS 
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3D compressed sensing PICCS 
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3D compressed sensing PICCS 
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3D compressed sensing Animated sequences 
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ADMM 3D TV ADMM 3D Wavelets PICCS 
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A bit of math On kernels 
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𝑓 = arg min
𝑓

 𝑅𝑓 − 𝑝 2
2 

𝑓 = 𝑃𝐾𝑒𝑟  𝑅  𝑓 + 𝑃𝐾𝑒𝑟  𝑅 ⊥  𝑓 = 𝑓𝐾𝑒𝑟 + 𝑓⊥  

𝑅𝑓 = 𝑅𝑓𝐾𝑒𝑟 + 𝑅𝑓⊥ = 𝑅𝑓⊥ 

           does not drive the search for  𝑓𝐾𝑒𝑟  𝑓  
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A bit of math More on kernels 
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𝑓 = arg min
𝑓

 𝑅𝑓 − 𝑝 2
2 

𝐼𝑚 𝑅𝑇 ⊂ 𝐾𝑒𝑟 𝑅 ⊥  

Gradient descent does not even modify 

Same for conjugate gradient 

∇ 𝑅𝑓 − 𝑝 2
2 = 2𝑅𝑇 𝑅𝑓 − 𝑝  

𝑓𝐾𝑒𝑟  
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A bit of math More on kernels 
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𝑓 = arg min
𝑓

 𝐺 𝑅𝑓 − 𝑝  2
2 

𝑓 = arg min
𝑓

 𝐺𝑅𝑓 − 𝐺𝑝 2
2 

𝐾𝑒𝑟 𝐺𝑅   is huge 
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A bit of math Initialization and regularization 
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 20% gating window 

• 4 times more information in          than in  

• A good           is crucial 

 

 Initialization 

•          remains in its initial state throughout iterations 

 

 Regularization 

• Updates           from  

• More regularization = better reconstruction of motion 

𝑓𝐾𝑒𝑟  𝑓⊥ 

𝑓𝐾𝑒𝑟  

𝑓𝐾𝑒𝑟  

𝑓𝐾𝑒𝑟  𝑓⊥ 
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4D compressed sensing AL + ADMM + TV 
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𝑓 = arg min
𝑓

  𝑅𝜃𝑆𝜃𝑓 − 𝑝𝜃 2
2

𝜃

+ 𝛼𝑅𝑂𝐼_𝑇𝑉 𝑓  

        : 4D sequence of volumes 

        : projection operator, source at angle  

        : linear interpolation operator 

        : measured projection, source at angle 

 

 Example, with a 4D sequence of 10 phases 

• Projection        was acquired at 87% of the cardiac cycle 

•       will interpolate between phase 80% and phase 90% 

•              

𝑓 

𝑅𝜃  𝜃 

𝑝𝜃  𝜃 

𝑆𝜃  

𝑝𝜃0
 

𝑆𝜃0
 

𝑆𝜃0
𝑓 = 0.3𝑓8 + 0.7𝑓9 
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4D compressed sensing AL + ADMM + TV 
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𝑓 = arg min
𝑓

  𝑅𝜃𝑆𝜃𝑓 − 𝑝𝜃 2
2

𝜃

+ 𝛼𝑅𝑂𝐼_𝑇𝑉 𝑓  

𝑅𝑂𝐼_𝑇𝑉 𝑓 =    ∇x𝑓 𝑚  2 +  ∇y𝑓 𝑚  
2

+  ∇z𝑓 𝑚  2 +  𝜔 𝑚 𝛻𝑡𝑓 𝑚  2

𝑀

𝑚=1

 

          : motion weighting, high outside ROI, low inside 

 

𝜔 𝑚  
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4D compressed sensing AL + ADMM + TV 
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4D compressed sensing AL + ADMM + TV 
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4D compressed sensing AL + ADMM + TV 
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4D compressed sensing AL + ADMM + TV 
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4D RecOnstructiOn using Spatial and TEmporal Regularization 

 For iter = 1 to max_iter 

• Conjugate gradient on  

• Positivity enforcement 

• Averaging along time outside ROI 

• Spatial TV minimization 

• Temporal TV minimization 

 

4D compressed sensing 4D ROOSTER 

41 

  𝑅𝜃𝑆𝜃𝑓 − 𝑝𝜃 2
2

𝜃
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4D compressed sensing 4D ROOSTER 
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4D compressed sensing 4D ROOSTER 
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4D compressed sensing 4D ROOSTER 
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3D compressed sensing Animated sequences 
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ADMM 4D TV 4D ROOSTER 
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Perspectives The 4D ROOSTER method 
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 Other regularization methods 

• Spatial TV => Wavelets 

• Temporal Non-Local Means 

 

 Fully automatic heart segmentation 

• Currently performed manually (semi-automatic tool) 

 

 Improve performance 

• Already implemented in CUDA 

• Can probably be optimized 
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Perspectives Clinical use 
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 Online processing for injected data 

• Requires a prototype 

 

 Offline processing for late enhancement 

• Disappointing 

 

 Compressed sensing in cardiac MRI 

• Replace projection by Fourier transform 

 

 Free-breathing thorax imaging 

• Replace ECG-gating by respiratory gating 
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Conclusion Improvement over PICCS 
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 PICCS is the current state of the art in cardiac C-arm CT 

• Results published only on animals 

• Our study demonstrates PICCS on human cardiac C-arm CT 

 

 4D ROOSTER outperforms PICCS 

• No motion outside the heart 

• Consistent motion inside the heart 

• Sharper edges 

• Lower noise 
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Conclusion Take-home messages 
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Limited data ? 

 Try to reduce the number of unknowns 

 Use compressed sensing iterative methods 

 Regularize as much as possible 

 Initialize carefully 

 Test by starting from zero 
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Conclusion 

52 

Thank you for you attention 


