

Solving imaging problems with Graph Cuts

Jerome Plumat

March 9, 2011 ICTEAM – Université catholique de Louvain

Belgium

Markov Random Field: definitions

MRF

X defined over a lattice $v = \{1, 2, ..., n\}$ with a neighbourhood system *Nⁱ* . Each random variable *Xi* ∈ **X** is associated with a lattice point *i* \in v and takes a value from the label set $L = \{l_1, l_2, ..., l_k\}$.

Clique

A *clique c* is a set of random variable **X***^c* which are conditionally dependant one to each other. The *order* of a clique is defined as the number of variable in the clique minus one.

Labeling

Any possible assignment of labels to the random variables is called a labelling. It is denoted by the vector **x**, and takes values from the set $\mathbf{L} = L^n$.

Maximum a Posteriori labelling

Gibbs Energy

$$
E(\mathbf{x}) = \sum_{c} \psi_{c}(\mathbf{x}_{c})
$$

MAP labelling

The maximum a posteriori (MAP) labelling **x** [∗] of a random field is defined as **x** [∗] = argmax**x**∈**^L** −*E*(**x**) and can be found by minimizing the energy function E.

Discrete Energy Minimization (1)

Discrete Energy Minimization (2)

Submodular function

Consider the set $N = \{1, 2, ..., n\}$. A set function $f_s: 2^N \to \mathbb{R}$ is said to be submodular iff ∀*A*,*B* ⊆ *N* the function satisfies:

*f*_{*s*}(*A*) + *f_s*(*B*) > *f_s*(*A*∩*B*) + *f_s*(*A*∪*B*)

Example if $N = \{1, 2\}$, the variables X_1 and X_2 are binary, the above condition becomes:

$$
f_b(0,1) + f_b(1,0) \ge f_b(1,1) + f_b(0,0)
$$

We will suppose for now that we have binary variables.

Minimizing Submodular Functions using Graph Cuts (1)

Any second order function of binary variables could be wrote as:

$$
E(\mathbf{x}|\theta) = \theta_{const} + \sum_{v \in v, i \in \mathcal{L}} \theta_{v;i} \delta_i(x_v) + \sum_{(u,v) \in v, (j,k) \in \mathcal{L}^2} \theta_{uv;jk} \delta_k(x_v) \delta_j(x_v)
$$

- $\theta_{\nu,i}$: the penalty for assigning the label i to latent variable x_{ν}
- θ _{*uv*, *ik*: the penalty for assigning labels *i* and *k* to variables x_i and x_i}
- $\delta_i(x_i)$: indicator function, equals to 1 if the $x_i = i$
- $E(\mathbf{x}, \theta)$ is submodular if $θ_{uv,jk} ≥ 0∀(u, v) ∈ ν,∀(j, k) ∈ L²$

Minimizing Submodular Functions using Graph Cuts (2)

$$
E(\mathbf{x}|\theta) = \theta_{const} + \sum_{v \in v, i \in L} \theta_{v,i} \delta_i(x_v) + \sum_{(u,v) \in v, (j,k) \in L^2} \theta_{uv;jk} \delta_k(x_v) \delta_j(x_v)
$$

P. Kohli.

Minimizing dynamic and higher order energy functions using graph cuts. PhD thesis, Oxford University, 2007.

Minimizing Submodular Functions using Graph Cuts (3)

- **•** the cost of an *st-cut* is equal to the energy $E(\mathbf{x}|\theta)$ of its corresponding configuration **x**,
- **the minimal cost could be computed in** *O*(*mn*²) **if the function is submodular, n & m are the number of nodes and edges in** *G*, [\[1\]](#page-7-0).

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. *IEEE Trans. Pattern Anal. Mach. Intell.*, 26(9):1124–1137, 2004.

N

Graph Cuts and segmentation

How can Graph Cuts be applied to segmentation?

- defining the parameters,
- some models.
- user interaction.
- higher order potentials

Graph Cuts and segmentation: set of labels

 $L = \{0, 1\} = \{$ foreground, background

$$
\mathcal{L}=\{0,1,2\}
$$

The size of the set of labels has no impact on the submodular \bullet characteristic.

Graph Cuts and segmentation: unary costs

 log -likelihood: θ _{*vi*} = −ln *Pr*(I ^{*v*} | *foreground*)

- The unary potential has no impact on the submodular characteristic. \bullet
- Any unary potential is submodular.

Yuri Boykov and Gareth Funka-Lea. Graph Cuts and Efficient N-D Image Segmentation. *Int. J. Comput. Vision*, 70(2):109–131, 2006.

> 11 / 22 [Graph Cuts](#page-0-0)

Graph Cuts and segmentation: pairwise costs

- This term must be submodular to benefit from the polynomial time solvable characteristic.
- **It introduces some kind of smoothness in the model.**
- Many models are known to submodular

Gaussian model

Potts model

Graph Cuts and segmentation: pairwise costs

active contour

J. Malcolm, Y. Rathi, and A. Tannenbaum.

Graph cut segmentation with nonlinear shape priors.

Image Processing, 2007. ICIP 2007. IEEE International Conference on, 4:IV –365–IV –368, 16 2007-Oct. 19 2007.

N. Xu, N. Ahuja, and R. Bansal.

Object segmentation using graph cuts based active contours. *Computer Vision and Image Understanding*, 107(3):210–224, 2007.

Graph Cuts and segmentation: user interactions

User interactions are very easy to incorporate into Graph Cuts model.

- o get prior knowledges (unary costs),
- fix the labels to certain pixels
- easily correct a solution by changing local costs,
- re-use the previous flow to faster compute a new solution.

Graph Cuts and segmentation: limitations and higher order clique

Using higher order clique?

- all previous models are first order clique,
- general submodular conditions are known for second order clique only,
- very few general high order models are known to be submodular
- what is the set of submodular energy functions?
	- Still an unsolved question.
	- $_9$ NP=P?

N

Graph Cuts and segmentation: limitations and higher order clique

General Potts model

Pushmeet Kohli, L'Ubor Ladický, and Philip H. Torr.

Robust higher order potentials for enforcing label consistency. *Int. J. Comput. Vision*, 82(3):302–324, 2009.

[Graph Cuts](#page-0-0)

Graph Cuts and Registration

How can Graph Cuts be applied to segmentation?

[Graph Cuts](#page-0-0)

Graph Cuts and Registration

- labe sets: $L = \{ \text{disp.} \}$, all the displacements
	- could be very large.
- Unary cost
	- \bullet the penalty to move a pixel *u* with a displacement d_{μ} ,
	- always submodular, every metric could be used.
- **•** Pairwise term
	- smoothing the displacement field,
	- submodularity must be check.

[Graph Cuts and Submodular Functions](#page-1-0) [Segmentation](#page-8-0) [Registration](#page-16-0) [Discrete Tomography](#page-19-0)

Graph Cuts and Registration

Herve Lombaert, Yiyong Sun, and Farida Cheriet. Landmark-based non-rigid registration via graph cuts. In *Proc. of the 4th International Conference, ICIAR 2007*, volume 4633, pages 166–175, 2007. **F. van der Lijn, T. den Heijer, M. Breteler, and W.J. Niessen.** Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. *NeuroImage*, 43(4):708–720, 2008.

Landmarks and non-rigid registration

19 / 22 [Graph Cuts](#page-0-0)

N

Graph Cuts and Discrete Tomography

How can Graph Cuts be applied to Discrete Tomography?

[Graph Cuts](#page-0-0)

N

Graph Cuts and Discrete Tomography

- What's happen when we deal with such kind of problem?
	- Much higher order clique
	- No more submodular (*in general*)
- Solutions? Still a very challenging problem.

Other applications

- image denoising,
- surface reconstruction,
- \bullet ...
- any problem which could be formulated as submodular lablization problem.