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• Restrict the reconstruction to lie onto normal space exclusively
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Our Method
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Reconstruct a clean image
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Reconstruct a clean image (1)

Model 1 (Baseline) :

Train an Autoencoder (AE) to perform an identity mapping
→ Only clean images in the training set

Encoder

D
ecoder
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Architecture of the autoencoder (AE)

~(↑2)

Strided convolution (5x5)
+ BN + LeakyReLU

Upsampling (↑2)
+ Convolution (5x5)
+ BN + LeakyReLU

~(↑2) Upsampling (↑2)
+ Convolution (5x5)
+ Sigmoid

Encoder Decoder

Depth
Width

Height
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Convolutional layer

Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson,
http://cs231n.stanford.edu/
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Reconstruct a clean image (2)

Model 2 :

Train an Autoencoder with Skip connection (AESc) to perform an
identity mapping

Encoder

D
ecoder
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Architecture of the autoencoder with skip
connections (AESc)

+

+

+

+

+

~(↑2)

Strided convolution (5x5)
+ BN + LeakyReLU

Upsampling (↑2)
+ Convolution (5x5)
+ BN + LeakyReLU

~(↑2) Upsampling (↑2)
+ Convolution (5x5)
+ Sigmoid

Encoder Decoder

+ Addition
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Network

+
Corruption

None
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Reconstruct a clean image (3)

Corrupt training images with synthetic noise to improve the
reconstruction

Stain Scratch

Drops Gaussian noise

Encoder

D
ecoder
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Comparison of the corruption models
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Network

+
Corruption

Network

+
Corruption
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Detect anomalies

Classification
Based

Reconstruction
Based

Out-of-Distribution
Based

Multi-class One-class
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Residual-based approach

Hypohtesis: Residual correlates with defective areas

-

Anomaly map

Pixel-wise
detection

L2 Norm Image-wise
detection

Anomaly map

Monte Carlo
dropout

σ2

Pixel-wise
detection

L2 Norm Image-wise
detection

Residual-based detection

Uncertainty-based detection

Encoder

D
ecoder
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Network

+
Corruption

Mask Input Prediction Residual Uncertainty
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Uncertainty-based approach

Hypohtesis: Uncertainty correlates with structural deviations from a
normal training set

-

Anomaly map

Pixel-wise
detection

L2 Norm Image-wise
detection

Anomaly map

Monte Carlo
dropout

σ2

Pixel-wise
detection

L2 Norm Image-wise
detection

Residual-based detection

Uncertainty-based detection

Encoder

D
ecoder
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Monte Carlo Dropout

Dropout
Randomly set values to 0

Monte Carlo Dropout
Run multiple forward passes through the model with a different dropout
mask every time
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Network

+
Corruption

Mask Input Prediction Residual Uncertainty
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1. Train on clean images with synthetic corruption

Stain Scratch

Drops Gaussian noise

Encoder

D
ecoder

2. Test on arbitrary images, i.e. with or without real defect
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Perspectives
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Interesting preliminary experiment...

For each image, construct 1× 64 vectors by sampling randomly
activation maps
→ 1 mask/layer

1- Characterize the clean distribution with a Gaussian distribution
(training images)

2- Compute the distance between new images and the clean distribution
(test images)
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Synthetic corruption of images for anomaly
detection using autoencoders

[ISPG seminar]

Any question?
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