

Synthetic corruption of images for anomaly detection using autoencoders

[ISPG SEMINAR]

Anne-Sophie COLLIN

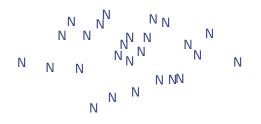
Supervisor Christophe DE VLEESCHOUWER

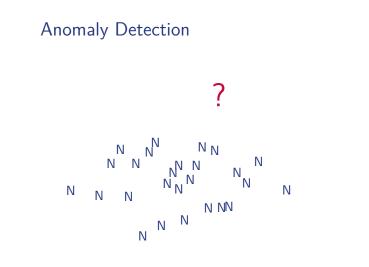
3rd of JUNE 2020

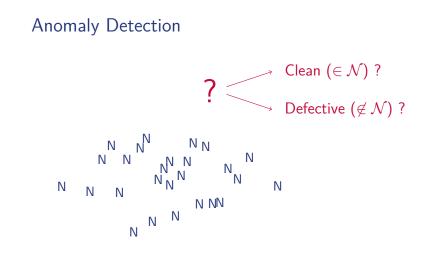
Anomaly Detection

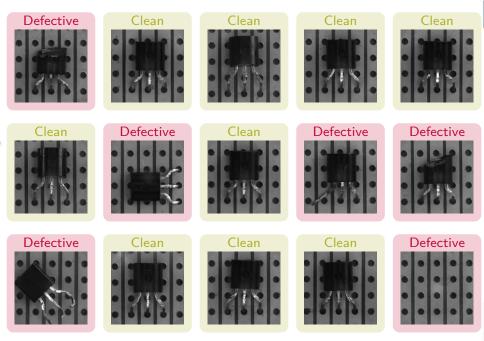
Ν

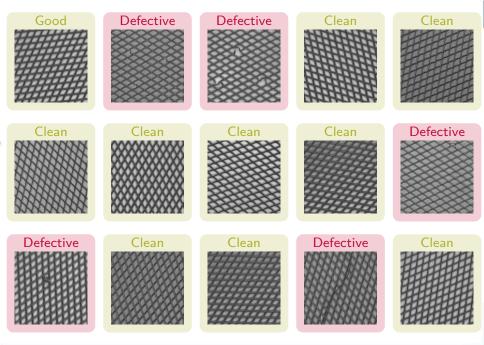
Anomaly Detection





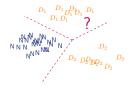




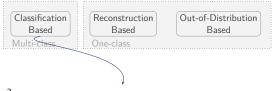


Classification	Reconstruction	Out-of-Distribution
Based	Based	Based

Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	



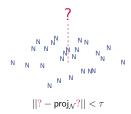
 $p(? \in \mathcal{N}) > p(? \in \mathcal{D}_i)$



Not suited, why?

- The scarcity of abnormal events makes normal vs abnormal classes unbalanced
- The result is unreliable for defective samples that are not sampled from one of the defective classes considered during training

Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	



Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	
	$\langle \rangle$	

Project the sample onto the normal space and compare the input it with its projection.

Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	

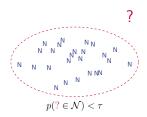
Project the sample onto the normal space and compare the input it with its projection.

reconstruction.

Difficult, why?

- · Restrict the reconstruction to lie onto normal space exclusively
- · Fix the rejection threshold

Classification	Reconstruction	Out-of-Distribution
Based	Based	Based



Classification Based	Reconstruction Based	Out-of-Distribution Based
Multi-class	One-class)

Difficult, why?

- Characterize the distribution of the normal class
- · Fix the rejection threshold

Our Method

Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	

Reconstruct a clean image

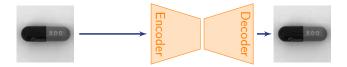
Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	

1-Context 2-Our Method 2.1-The Reconstruction 2.2-The Detection 3-Summary 4-Perspectives

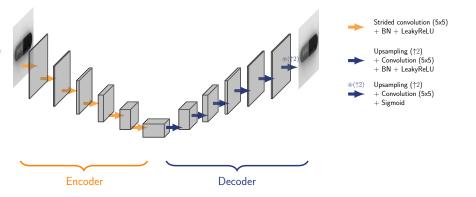
Reconstruct a clean image (1)

Model 1 (Baseline) :

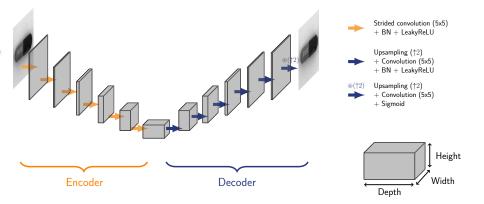
Train an Autoencoder (AE) to perform an identity mapping \rightarrow Only clean images in the training set

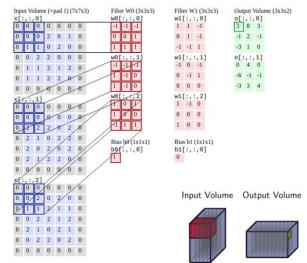


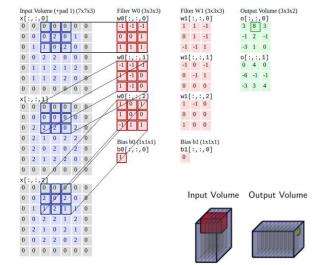
Architecture of the autoencoder (AE)

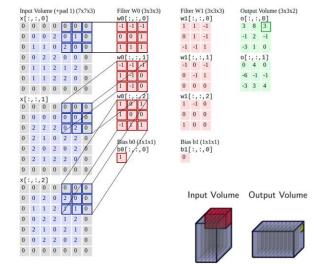


Architecture of the autoencoder (AE)

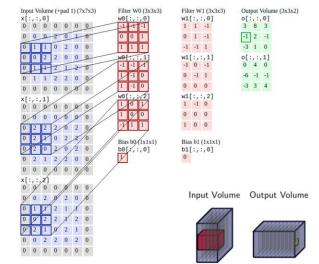








 $Image \ source \ CS231n: \ Convolutional \ Neural \ Networks \ for \ Visual \ Recognition \ 2020, \ Fei-Fei \ Li \ and \ Andrej \ Karpathy \ and \ Justin \ Johnson, \ http://cs231n.stanford.edu/$



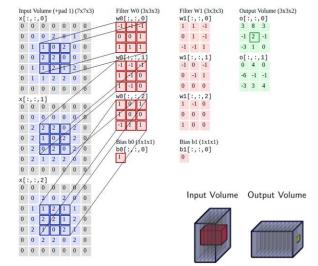
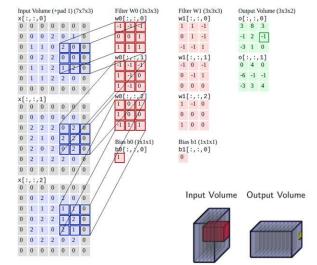


Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/



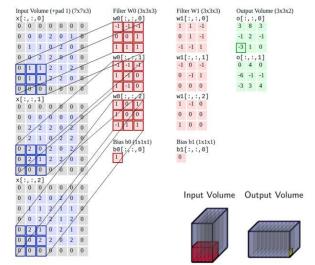


Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/

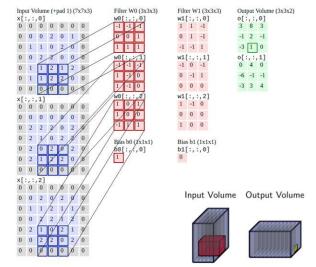


Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/

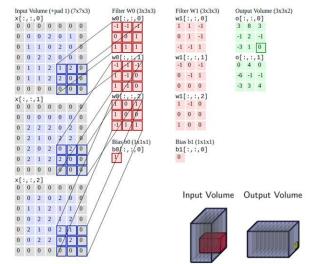
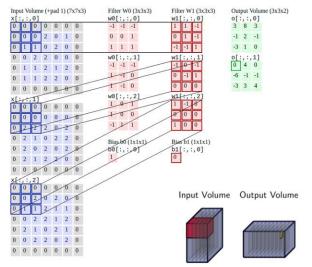
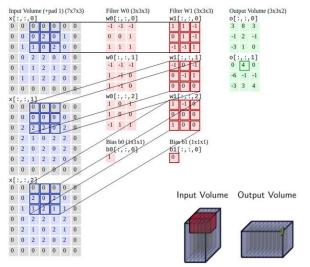
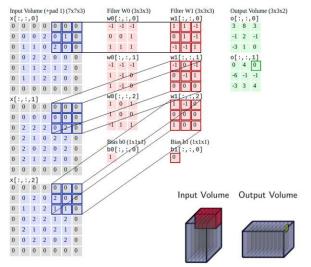
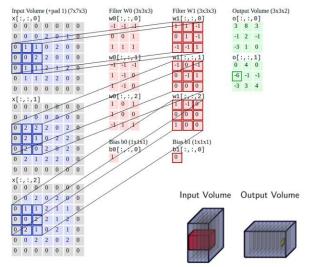


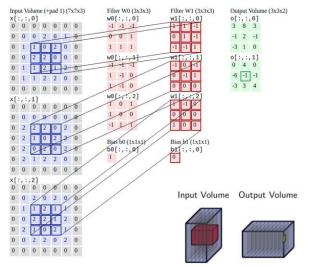
Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/











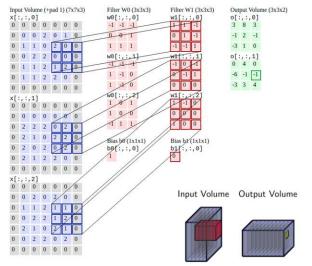


Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/

11

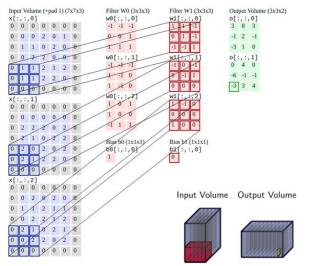


Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/

11

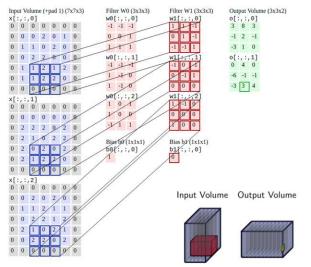


Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/

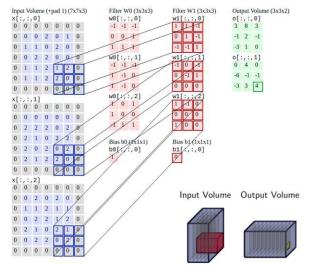
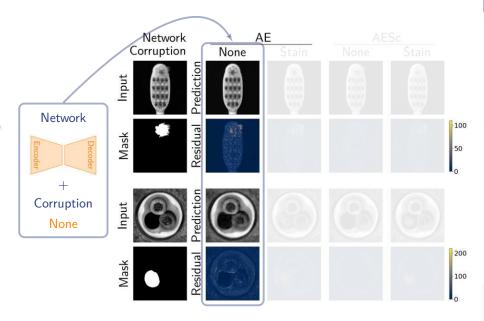


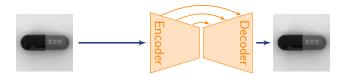
Image source CS231n: Convolutional Neural Networks for Visual Recognition 2020, Fei-Fei Li and Andrej Karpathy and Justin Johnson, http://cs231n.stanford.edu/



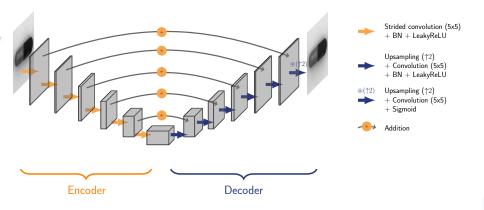
Reconstruct a clean image (2)

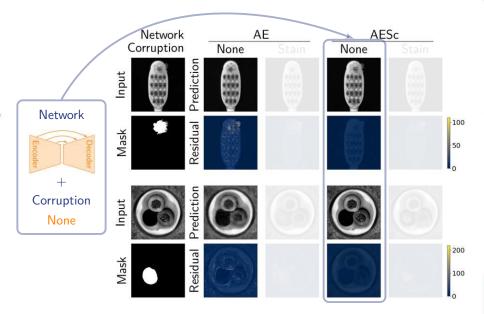
Model 2 :

Train an Autoencoder with Skip connection (AESc) to perform an identity mapping



Architecture of the autoencoder with skip connections (AESc)



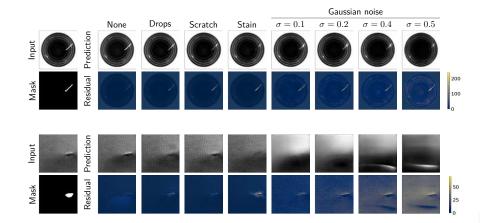


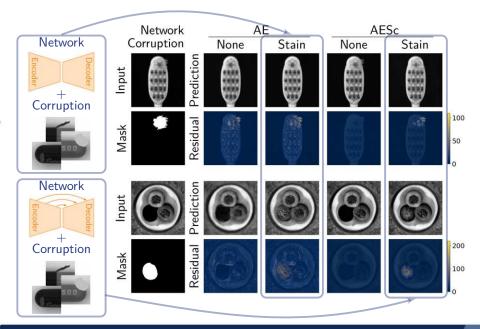
Reconstruct a clean image (3)

Corrupt training images with synthetic noise to improve the reconstruction



Comparison of the corruption models





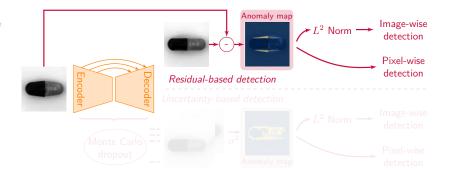
Detect anomalies

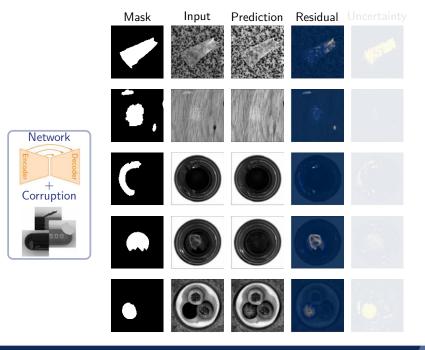
Classification	Reconstruction	Out-of-Distribution
Based	Based	Based
Multi-class	One-class	

 $||? - \operatorname{proj}_{\mathcal{N}}?|| < \tau$

Residual-based approach

Hypohtesis: Residual correlates with defective areas



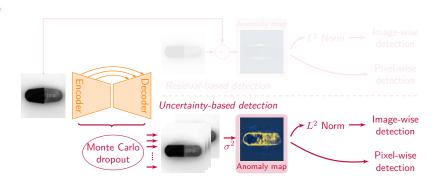


1-Context 2-Our Method 2.1-The Reconstruction 2.2-The Detection 3-Summary 4-Perspectives

 $||? - \operatorname{proj}_{\mathcal{N}}?|| < \tau$

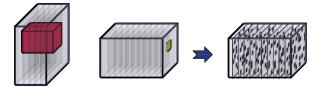
Uncertainty-based approach

Hypohtesis: Uncertainty correlates with structural deviations from a normal training set



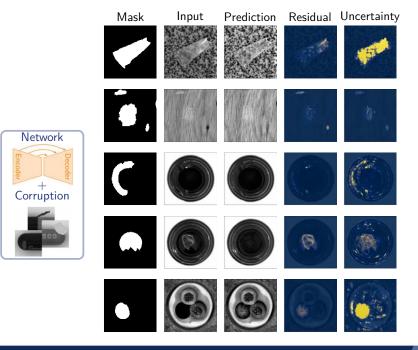
Monte Carlo Dropout

Dropout Randomly set values to 0

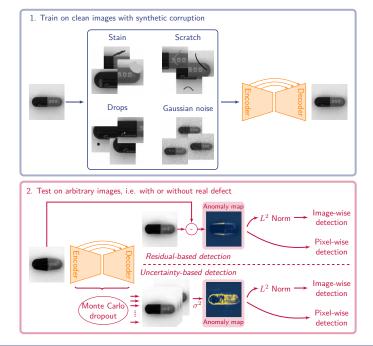


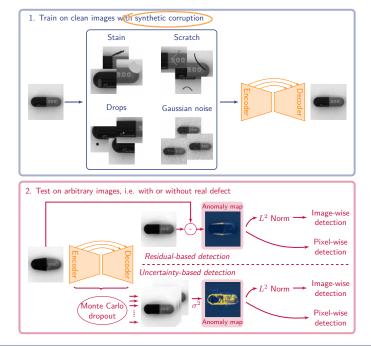
Monte Carlo Dropout

Run multiple forward passes through the model with a different dropout mask every time

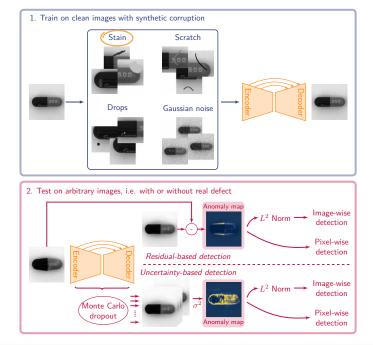


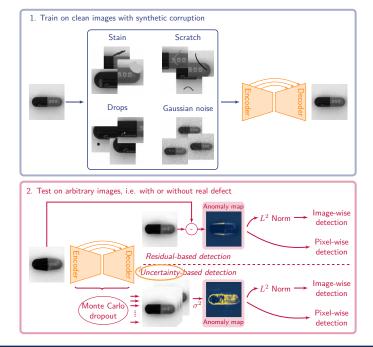
1-Context 2-Our Method 2.1-The Reconstruction 2.2-The Detection 3-Summary 4-Perspectives





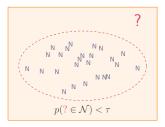
1-Context 2-Our Method 2.1-The Reconstruction 2.2-The Detection 3-Summary 4-Perspectives





Perspectives

Classification	Reconstruction	Out-of-Distribution
Based	Based	Based

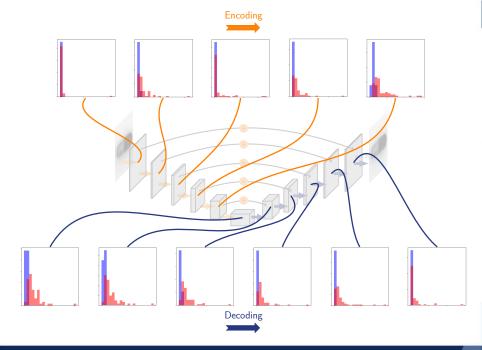


Interesting preliminary experiment...

For each image, construct 1×64 vectors by sampling randomly activation maps \rightarrow 1 mask/layer

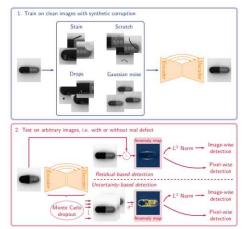
1- Characterize the clean distribution with a Gaussian distribution (training images)

2- Compute the distance between new images and the clean distribution (test images)



Synthetic corruption of images for anomaly detection using autoencoders

[ISPG SEMINAR]



Any question?

