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Machine Learnings objectiveS

Machine Learning is popular because it works very well... but...

Accu racy = Good predictions
(low generalization error)

Check out this
cool model I learned!

I analyzed all your
phone calls on 1Tb of RAM
during 10 days and I can
now recognize your
mood !

Efficiency Privacy

= low memory/time requirements Protect sensitive data

Several objectives that are incompatible!

There are probably others (e.g., robust ML, ethical ML), but we focus on these three

v
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In this talk...

Part 1

Privacy-aware learning
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Machine Learning recap’

(Unsupervised) Machine Learning Eg,
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Machine Learning recap’

(Unsupervised) Machine Learning :E.g.,
N - Clustering 6)
Learning 9
X = T features Mathematical : . Dimensionallty reductlon
dataset H model I/ PCA
&-;;;;;I-e: “explain”the data 07 X

- Autoencoder, GAN, SOM...

But, what if the dataset contains sensitive information?

* DNA databases, medical records (results of HIV testing,...)

* Behavior on social media, web queries,...

* Touchy surveys (political opinions, drugs use, sexual preferences...)
* loT devices

We want to learn (generalize) from the dataset while protecting its “privacy’’!
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Machine Learning recap’

(Unsupervised) Machine Learning :E.g.,
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But, what if the dataset contains sensitive information?

* DNA databases, medical records (results of HIV testing,...)

* Behavior on social media, web queries,...

* Touchy surveys (political opinions, drugs use, sexual preferences...)
* loT devices

We want to learn (generalize) from the dataset while protecting its
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What IS privacy!?

Privacy is very difficult to define!

Depends on the application (what do we want to protect), and the attack model (what do we want to protect against).
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What IS privacy!?

Privacy is very difficult to define!

Depends on the application (what do we want to protect), and the attack model (what do we want to protect against).

There exist a thousand™ of privacy definitions, with different pro/cons

Mathematical privacy definitions: But also to consider:
* k-Anonymity * Legal privacy definition
* Information-theoretic privacy definitions * Philosophical privacy definitions!?

* Differential Privacy

In this work

*citation needed .



Towards DP: privacy by randomization

The predecessor to DP: randomized response (used for surveys)

Example: do you watch youtube videos at work?
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Towards DP: privacy by randomization

The predecessor to DP: randomized response (used for surveys)
Example: do you watch youtube videos at work?

We obtain a fraction P of “Yes”
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Towards DP: privacy by randomization

The predecessor to DP: randomized response (used for surveys)
Example: do you watch youtube videos at work?

We obtain a fraction P of “Yes”

| =

@ P/' True answer L D | 1
4 —_
Y — |
& ©
o Estimation of the true proportion
1
p-1 Answer randomly iy 1

o Ly
p=2(p 4) p
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Towards DP: privacy by randomization

The predecessor to DP: randomized response (used for surveys)
Example: do you watch youtube videos at work?

We obtain a fraction P of “Yes”

Q P/’ True answer o D | 1
2 4

0 Estimation of the true proportion
p_ L~ Answer randomly iy 1
2 A ~
p=2(p—7)=p

Randomness introduces plausible deniability (i.e., privacy comes from uncertainty)

2 S.L.Warner,“Randomised response: a survey technique for eliminating evasive answer bias,”’
Journal of the American Statistical Association, 1965



Differential Privacy: (a possible) definition

Intuitive definition:

“An algorithm is Differentially Private if its output is not
much influenced when one user of the dataset is changed”

“It is not possible to detect with high confidence whether | participated to the dataset or not”

25 C. Dwork, “Differential Privacy,” 2006
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Differential Privacy: (a possible) definition

Intuitive definition:

“An algorithm is Differentially Private if its output is not
much influenced when one user of the dataset is changed”

“It is not possible to detect with high confidence whether | participated to the dataset or not”

Formal definition: a randomized algorithm [ is Differentially Private if

G DP A For all subsets of

Taken over the \V/S é.,, possible outcomes
randomness in | = © " f satisfies € — DP if: Y e
PLf(X) € S] < ¢ PIF(X') € 5]

Privacy parameter/budget .-
(should be small, see later) Neighbouring relation ~

X ~ X' fif they differ by one entry I ~ I

ie. |[X|=|X'| and |[(XUX)\(XNX)| <2

'\, For all “neighbour” DS

30 C. Dwork, “Differential Privacy,” 2006



Differential Privacy: interpretation

In practice, epsilon is small, so DP means e — g VS

f satisfies € — DP if: VX ~ X7
Pf(X) € S]~P[f(X") € S+ O(e) P/(X) € 5] < ¢ - BIf(X") € 8]
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Differential Privacy: interpretation

In practice, epsilon is small, so DP means e — DP V.S
f satisfies € — DP if: VX ~ X'

Interpretation of DP as plausible deniability: / almost doesn’t decrease uncertainty

i
X I “Adversary” Assume the adversary has prior knowledge
1
/
I o1 @ P[X, = X] and P[X; = X]
1
/ :_, f(Xt) Then f(X3) is publicly released!

What did the adversary “learn”?

Y
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Differential Privacy: interpretation

In practice, epsilon is small, so DP means e — DP V.S
f satisfies € — DP if: VX ~ X'

Interpretation of DP as plausible deniability: / almost doesn’t decrease uncertainty

i
X I “Adversary” Assume the adversary has prior knowledge
1
/
I ] ® P[X, = X] and P[X; = X
1
, or! :_> f(Xt) Then f(X3) is publicly released!

What did the adversary “learn”?

~

PIX; = X[f(X¢) = s] woes PIf(X¢) = 5[ Xy = X|P[X; = X] o o PlX, = X|
P = 1) =]~ FLFCR) =0, = XL, =X 4 P =X

Posterior “belief ratio” Small Prior “belief ratio”

Example: 2 possibilities >>> 90.1% / 9.9% . .01 90% / 10%



Differential Privacy: interpretation??

In practice, epsilon - DP means e —DP V.S
f satisfies € — DP if: VX ~ X’

How small exactly?!  [EIA(X) €5l < e -Pf(X) €5

36



Differential Privacy: the epsilon problem

No satisfying rule to decide how small € should be in practice :-(

The least we can say is that it is heavily context-dependent and requires “expert knowledge”
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Differential Privacy: the epsilon problem

No satisfying rule to decide how small € should be in practice :-(

The least we can say is that it is heavily context-dependent and requires “expert knowledge”

In addition, there is a “privacy-utility” tradeoff (see more later)!

Accuracy
A

Good

performances

Bad

performances

» €
“Very private” No privacy

We should pick € as large as possible to get the best accuracy... while not compromising privacy too much...
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Differential Privacy: the epsilon problem

No satisfying rule to decide how small € should be in practice :-(

The least we can say is that it is heavily context-dependent and requires “expert knowledge”

In addition, there is a “privacy-utility” tradeoff (see more later)!

Accuracy
A

Good

performances

Bad

performances

» €
“Very private” No privacy

We should pick € as large as possible to get the best accuracy... while not compromising privacy too much...

The consensus seems to be that € ~ 1072 --- 107! is“enough”...

...to take with a grain of salt!
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DP how-to: Laplacian mechanism

(A) standard way to achieve DP:add randomness as additive Laplacian noise

The Laplacian mechanism

If g(-) is the target task, then
F(X) = g(X) +n with n~ Lap (ﬁ)

€
is ¢ — DP

40



DP how-to: Laplacian mechanism

(A) standard way to achieve DP:add randomness as additive Laplacian noise

0S5

o4

03

02

01

o A
0 8 6 4 2 0 2 4 6 8 10
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DP how-to: Laplacian mechanism

(A) standard way to achieve DP:add randomness as additive Laplacian noise

“How much does one sample
affect the output?” "

=

' s

40 8 6 4 2 0 2 4 6 8 1O
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DP how-to: Laplacian mechanism

(A) standard way to achieve DP:add randomness as additive Laplacian noise

“How much does one sample
affect the output?” "

=

' s

40 8 6 4 2 0 2 4 6 8 1O

Example: histogram
43 Ag =1 4|IILI_




Differential Privacy: pros/cons

* Extensively studied, widely accepted standard (2008-present) " 3

Example: Apple learning to predict emojis
English French

44



Differential Privacy: pros/cons

o
N

* Extensively studied, widely accepted standard (2008-present) " 3
* Very strong guarantee (robust to, e.g., side-information...)

* Composition property (robust to post-processing)

* Often easy to implement (Laplacian mechanism)

* How to pick epsilon? Not easy to interpret!
* A“too strong” (restrictive) guarantee! (cfr privacy-utility tradeoff)

)
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In this talk...

Part 2

Compressive Learning
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Machine Learning recap’

(Unsupervised) Machine Learning Eg,

0
A - Clustering G)L

: Learning 9
X — + TV features _)

. : Mathematical : . Dimensionality reduction
ataset : :
H model : S L PCA
D > :
“explain” the data 0 X
N examples :

- Autoencoder, GAN, SOM...
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Compressive Learning

Usual machine learning Compressive Learning

R. Gribonval et al.,“Compressive Statistical Learning
with Random Feature Moments,” 2017

Learnin Ky -y
X g X ez, <ty 0
é //760,,, o V
4
cmmmm-- '/ “_ _____ R [ ,"" *
| . 4' | I- [ |
i ;
' L ) : : : ~ : T “observations”
I I i i X ;
I L ) I 1 — > 1 m ~ size(f) < Nn
1
L | DI : : :
i i i i v
s Multiple passes over X \ 1 Single pass over X 4 Dataset sketch (summary)
Large /V means... Large /V means...

... constant
memory &
training time!

... large
memory &
training time!



CL challenges

“Sketchlng

Generallzed moments
Linear sensing

Sketch

7

Dataset /\
Goal:

* Preserve sufficient information
* Compress as much as possible

\

* Efficient computation (fast transform, quantized sketch)

J

49

“Learning” 9

Moment matchlng

Inverse problem
Model

Goal:

* Recovery procedure
* Tractable algorithm




Sketching

“Sketching”
X — ZX
Generalized moments
Linear sensing

Dataset /\

( N

Goal:

* Preserve sufficient information

* Compress as much as possible

* Efficient computation (fast transform, quantized sketch)

\ J

Sketch

50



Compressing a dataset?

N examples

/_/%
1
X = I,-,-, ce ,I, n-dimensional
-
[ ] L] H B
o N - l - v
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Compressing a dataset?

N examples

P N examples
P
[] [
' I
X = I7-7-7 S ,I, Dim. reduction 1 LR I R
[ ] I L H B Rn — RP
o N - l - L
y, € RY
k»aci c R" Z

- Compressed representation
* Preserves relevant information
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Compressing a dataset?

N examples

N examples

e N ——
—
O O
5
O : :
X = I7 7-7---,I, Dim. reduction 1 LR I R
-I- H B Rn%RP
1 B B

k»ar;?; c R"

53

Lyi c R”

- Compressed representation
* Preserves relevant information
- Constant number of examples x

N can be VERY large (“big data”)!



Compressing a dataset!

N examples

e ]
:II -; -
u
I,-,-, e ,I, Sketching zZx = mceCcm
-I- EE --
X B -

k»ar;?; c R"

- Compressed representation
* Preserves relevant information
- Dataset summary = single vector

54 [Gribonval17]



Compressing a dataset!

N examples

e e -
TTHEF -

L _
I7 7-7"'7.7 <X — . cC™
-I- 1 --
--- l-

k»ac?; c R"

- Compressed representation
* Preserves relevant information
- Dataset summary = single vector

55 [Gribonval17]



1. Project on m (random) vectors

56

i Controls the cluster scale



1. Project on m (random) vectors
2. Nonlinear periodic signature function
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2. Nonlinear periodic signature function
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1. Project on m (random) vectors

2. Nonlinear periodic signature function
3. Pooling (average)

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]



1. Project on m (random) vectors

2. Nonlinear periodic signature function
3. Pooling (average)

- 1 inaz-_
- ; 1 ™
zZx = N EEXB J c C
£

- ] — 1
[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]



Sketched learning

“Learning” 9

Moment matching
Inverse problem

Sketch Model

Goal:

* Recovery procedure
* Tractable algorithm

lllustration here: Compressive K-Means

61



Compressive K-Means

, X ={xieR"}},, C = {cr}rm
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Compressive K-Means

L, X =1{x; € R™}L,
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Compressive K-Means

, X ={xieR"}},, C = {cr}rm
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Idea: sketch matching (inverse problem)

064 [N. Keriven et al., “Compressive K-Means”, IEEE ICASSP, 2017]



Compressive K-Means

A X = {Xz' & Rn}fj\il K R C = {ck}le
Oooogoooo ZX E a{kZCk:
(0] CBOOOgb o Q
og&og i k=1 ' “

- --
8 o ° ° N
OO(QQ OO o o ] || Y
o . D
. ]
o = 20 '
N

....................... s

i min ||zx — E pZze, |3 o .

: O, — ©14:  Approximatively solved by greedy algorithm
:  Nonconvex optimization

65 [N. Keriven et al., “Compressive K-Means”, IEEE ICASSP, 2017]
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Empirically: ok when
m = O(nK)
Model sizej

No dependence on N!
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CLina

“Sketching”

nutshell

“Learnlng

Generalized moments

Linear sensing
Dataset A

Sketch operator

1
=~ Z exp (it z;)

x;,eX

* Can be done in one pass, online,in //...
* Privacy-preserving (7)

Moment matchlng
Inverse problem

Sketch Model

Optimal decoder

Aly] € argmin [ly — A(7)]2

* Nonconvex optimization
* Complexity independent of N

68



In this talk...

Part 3

Privacy-Preserving Compressive Learning
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Compressive Learning and Privacy

Intuitively, releasing only the sketch provides some form of (N-)anonymity...

X
I Sketch operator
— \ 1 o
ZX = == E exp(i)” x;
Invariant to permutations! =z X — ZX’ N — ( z)

il ———"
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Compressive Learning and Privacy

Intuitively, releasing only the sketch provides some form of (N-)anonymity...

X
I Sketch operator
— \ 1 o
ZX = == E exp(i)” x;
Invariant to permutations! =z X — ZX’ N — ( z)

X' /
A stronger, formal privacy guarantee for Compressive Learning? >>> DP!

Besides DPs advantages, a good match:  CL:“we forget the individual signals
and store only statistics of the dataset”

I”

DP:“the output is not much influenced by one signa

e — IR g
f satisfies € — DP if: VX ~ X
P[f(X) € S] < e -P[f(X') € I]
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Private CL: attack model

What is publicly available and what is kept secret?
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Private CL: attack model

What is publicly available and what is kept secret?

Sketch
1| Userdata + contributions
Two extreme cases:
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Private CL: attack model

Model combining the two extreme cases:

Dataset is shared across L devices...
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Private CL: attack model

Model combining the two extreme cases:

Dataset is shared across L devices...

Lo .
Private

-+ >
II I sketching
(Def. 3) |

X

Device |

L)

» Private

-
II I sketching
(Det. 3)

'll' Device / ,

...each device holds 1 signals...

N:an()
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...and releases a (privacy-preserving) local sketch!



Private CL: attack model

Model combining the two extreme cases: ' Important remarks

|) The adversary can know the sketch operator!

2) It is randomly drawn but fixed,

Dataset is shared across L devices... i.e., additional noise is necessary!
no e : Adversary
- » Private »
II I sketching |
(Def. 3) .
’ -
A Device 1 Compressive
Learning
>
L ' ‘
- » Private
sketching SXx ¢
e : | L.earned
(Det. 3) Model
‘\ L Device L |
x Sxy
...each device holds 71¢ signals... ...and releases a (privacy-preserving) local sketch!

N:an()
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Differentially Private Sketching

Local private sketches are obtained by Laplacian mechanism and subsampling

See later
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Differentially Private Sketching

Local private sketches are obtained by Laplacian mechanism and subsampling

See later
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Differentially Private Sketching: proof

Theorem: the proposed mechanism
( Keeps r values

1 .~ L V2
SX =N Z (exp(iQ' x;) © b;) + & <" whereaf(zgjm )
x; X : Vo€
is ¢ — DP

Proof idea:

S

Max L| distance

< exp Ze Ob—2, ©Ob

T° nonzero entries

Remark

It can be argued that the bound above is sharp (without additional constraints)
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But... can we still learn?

l.e., what about “utility”??

How does the addition of noise and subsampling affect learning?
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But... can we still learn?

l.e., what about “utility”??

How does the addition of noise and subsampling affect learning?
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the effect of the parameters
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Privacy-utility tradeoff (case study)

Some experimental privacy-utility curves (in a well-controlled environment)

e M

KA\

CLOMPR, m=100kd, f=/., t=1mn

CEM, CLOMPR, m=100kd. f=f,, r=]

CLOMPR, m=100kd, £/, rem

«« CRM, CLOMPR, m=100kd, f=f,, r=]
w— CERM, CLOMPR, melokd, =/, ram
CKM, CLOMPR, m=10kd, f=£,, r=1
CRM, CLOMPR, m=10kd, =/, r=m
CRKM., CLOMPR, m=10kd, f=f_, r=]

.
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DPLonvd with improved initindization

10 i+

Privacy parameter «

1) 1),

... competitive with state-of-the-art Differentially Private K-Means :-)
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Discussion

Accuracy ‘

Role of 7

Efficiency Privacy
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Discussion

Accuracy ‘

Role of 7

Privacy

Here r=m is the best, but has negligible impact
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Discussion

Role of m
Accuracy

’ Efficiency
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Discussion

Role of m
Accuracy

For given epsilon, there is an optimal m
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Discussion

Role of L
Accuracy

Efficiency Privacy
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Discussion: the huge advantage

Role of n
Accuracy

Efficiency Privacy

388



P

<—> Private
II ' sketching
(Def. 3)

Device 1

<—> Private
II I sketching
(Def. 3)

Device L
J

subsampled sketchs

‘-

Recap’

Compressive
Learning
>
g
Learned
Model

> -+ =
average
€ S

89

I\ -
A
. .
/A

2

/m,



90



