FBMC/OQAM transceivers for 5G mobile communication systems

François Rottenberg

UNIVERSITÉ DE BRUXELLES

"Modulation"

Wikipedia definition:

Process of varying one or more properties of a periodic waveform, called the carrier signal, with a modulating signal that typically contains information to be transmitted.

"Someone I know" definition:

Convert bits of information into an electromagnetic wave

Digital modulations here

Evolution of telecommunication standards

2010... 2030

2020... 2040

4G modulation format might not be the best to address 5G challenges

Outline

Some basics Single-carrier systems Classical multicarrier systems FBMC-OQAM systems Principle Pros and cons My research

Outline "vulgarized"

Some basics "La télécom pour les nuls"

Single-carrier systems "How are old systems working?"

Classical multicarrier systems "4G-like systems"

FBMC-OQAM systems "The systems I study"

Principle "How do they work?"

Pros and cons "Why are they the best?"

My research "What am I doing?"

Outline

Some basics

Single-carrier systems Classical multicarrier systems FBMC-OQAM systems Principle Pros and cons Mv research

Outline

Some basics Single-carrier systems "How are old systems working?" **FBMC-OQAM** systems

"Modulation"

"Someone I know" definition:

Convert bits of information into an electromagnetic wave

Digital modulations here

Bits to symbols mapping

 T_s is called the sampling period

Symbols d[n] might be complex, contain one or more bits of information

Bits to symbols mapping

d[n] might be complex, contain one or more bits of information

2 bits of information

00

01

Incoming bits	Symbol <i>d</i> [<i>n</i>]	
0	-1	
1	+1	

$\frac{-1-j}{\sqrt{2}}$	10
$\frac{-1+j}{\sqrt{2}}$	11

10	$\frac{+1-j}{\sqrt{2}}$
11	$\frac{+1+j}{\sqrt{2}}$

Bits to symbols mapping

d[n] might be complex, contain one or more bits of information, depending on "link quality"...

Digital to analog conversion (DAC)

Wait... s(t) complex?!

s(t) is called the baseband equivalent of the transmitted signal

How in practice?

Analog mixer/oscillator/modulator...

 $s_{pb}(t) = \Re(s(t)e^{j\omega_c t}) = \Re(s(t))\cos(\omega_c t) - \Im(s(t))\sin(\omega_c t)$

What about the receiver?

Noise and impairments

Equivalent transmission chain

All discrete baseband equivalent model, why?

Abstraction model

Easy to simulate

How it is done in practice

Easy to understand, more tractable

Very accurate

What are the disadvantages of single-carrier systems?

In practice, multipath channel, intersymbol interference,

$$R(\omega) = H(\omega)D(\omega)$$

Need for channel « equalization », might require long filters...

 $H(\omega)H_{eq}(\omega)\approx 1\leftrightarrow \widehat{D}(\omega)\approx D(\omega)\leftrightarrow \big(h\otimes h_{eq}\big)[n]\approx \delta[n]$

Outline

Some basics Single-carrier systems Classical multicarrier systems "4G-like" FBMC-OQAM systems Principle Pros and cons

Multicarrier systems

Single-carrier baseband and multicarrier spectrum comparison

Channel

Demodulated symbol at subcarrier m_0 and multicarrier symbol l_0 :

$$x_{m_0,l_0} = < r[n], g_{m_0,l_0}[n] > \sum_n r[n] g_{m_0,l_0}^*[n]$$
²⁵

Orthogonality conditions

Assume ideal condition, $h[n] = \delta[n]$ and r[n] = s[n]

$$\begin{split} \hat{d}_{m_0,l_0} = &< s[n], g_{m_0,l_0}[n] > \\ &= \sum_{m=0}^{2M-1} \sum_{l=-\infty}^{+\infty} d_{m,l} < g_{m,l}[n], g_{m_0,l_0}[n] > \\ &= d_{m_0,l_0} \end{split}$$

if <u>« complex »</u> orthogonality of the pulses is fullfilled, i.e.,

$$< g_{m,l}[n], g_{m_0,l_0}[n] > = \delta_{m-m_0,l-l_0}$$

for $m_0, m = 0, ..., 2M - 1$ and $\forall l, l_0$ (between symbols and subcarriers). "Generalized Nyquist constraint".

Generalized Nyquist constraint

 $< g_{m,l}[n], g_{m_0,l_0}[n] > = \delta_{m-m_0,l-l_0}$

Where is the gain of multicarrier systems?!

Practical channel conditions

Channel approximated as flat at the subcarrier level $x_{m_0,l_0} = \langle r[n], g_{m_0,l_0}[n] \rangle \approx H(\omega_{m_0})d_{m_0,l_0}$ and d_{m_0,l_0} is simply recovered by $\hat{d}_{m_0,l_0} = H^{-1}(\omega_{m_0})x_{m_0,l_0} \approx d_{m_0,l_0}$ > Very simple channel "equalization"

Demodulated symbol at subcarrier m_0 and multicarrier symbol l_0 :

$$x_{m_0,l_0} = < r[n], g_{m_0,l_0}[n] > \sum_n r[n]g_{m_0,l_0}^*[n]$$
²⁹

Multicarrier systems vs singlecarrier systems?

Disadvantages of classical multicarrier systems based on complex orthogonality

Suppose g(t) is a square-integrable function on the real line and consider the Gabor system

$$g_{m,l}(t) = g(t - l\Delta t)e^{j2\pi m\Delta ft}$$

where $m, l \in \mathbb{Z}$. If $\Delta t \Delta f = 1$, the **Balian-Low theorem** states that, if

 $\{g_{m,l}(t), m, l \in \mathbb{Z}\}$

is an orthonormal basis for the Hilbert space $L^2(\mathbb{R})$, then either

 $\int_{-\infty}^{+\infty} t^2 |g(t)|^2 dt = \infty \text{ or } \int_{-\infty}^{+\infty} \omega^2 |G(\omega)|^2 d\omega = \infty$ where $G(\omega)$ is the Fourier transform of g(t).

Limitations of classical multicarrier systems based on complex orthogonality?

In other words, if $\Delta t \Delta f = 1$ (1 symbol per s per Hz, full spectral efficiency, **high data rate**) and

 $< g_{m,l}, g_{m_0,l_0} > = \delta_{m-m_0,l-l_0}$ for all m, l (complex orthogonality),

the Balian-Low theorem tells us that the prototype filter/atom g(t) cannot be well localized in time and Bad for spectral efficiency, robustness, synchronization...

OFDM leakage

 $|G(\omega)| = |\operatorname{sinc}(\omega T)|$

Spectral leakage leads to interference

Time-frequency lattice of <u>CP</u>-OFDM

Undersampled lattice, loss in throughput rate

$$\frac{1}{(T+T_{CP})\frac{1}{T}} = \frac{T}{T+T_{CP}} < 1$$

Outline

Some basics Single-carrier systems Classical multicarrier systems FBMC-OQAM systems Principle Pros and cons

Outline

Some basics Single-carrier systems Classical multicarrier systems FBMC-OQAM systems Principle "How does it work?" Pros and cons

FBMC-OQAM principle

We want:

- Good time-frequency localization
- Full spectral efficiency

But how? Balian-Low...

Use staggered lattices to circumvent the Balian-Low theorem Idea used by FBMC-OQAM modulations [Chang, 66], [Saltzberg, 67] Link to Wilson bases.

Classical multicarrier lattice

FBMC-OQAM lattice

Orthogonality satisfied only in the real domain

Good frequency localization

No need for synchronization of the users

USER 2

42

FBMC-OQAM transmission model

Transmitted signal

$$g_{-\mathfrak{I}} \text{ pattern} \qquad s[n] = \sum_{m=0}^{2M-1} \sum_{l=-\infty}^{+\infty} d_{m,l} g_{m,l}[n]$$
with $g_{m,l}[n] = \mathbf{j}^{l+m} g[n - lM] e^{\frac{j2\pi}{2M}mn}$.
Assume ideal channel, i.e., $r[n] = s[n]$. The demodulated signal is
 $\hat{d}_{m_0,l_0} = \Re(\langle s[n], g_{m_0,l_0}[n] \rangle)$
 $= \sum_{m=0}^{2M-1} \sum_{l=-\infty}^{+\infty} d_{m,l} \Re(\langle g_{m,l}[n], g_{m_0,l_0}[n] \rangle)$
 $= d_{m_0,l_0}$
Interference from symbol $d_{m,l}$
if, $\Re(\langle g_{m,l}[n], g_{m_0,l_0}[n] \rangle) = \delta_{m-m_0,l-l_0} \forall m, m_0, l, l_0$.

FBMC-OQAM lattice

Real orthogonality conditions

 $< g_{m,l}[n], g_{m_0,l_0}[n] > = j^{\Delta m + \Delta l} \sum_n g[n - lM] g[n - l_0 M] e^{\frac{j2\pi}{2M} \Delta m n}$

... (simple math. manipulations)

$$= j^{\Delta m + \Delta l + \Delta l \Delta m} (-1)^{\Delta m l_0} \sum_{n} g \left[n - \frac{\Delta l M}{2} \right] g \left[n + \frac{\Delta l M}{2} \right] e^{\frac{j2\pi}{2M} \Delta m n}$$

$$\Delta m = m - m_0, \Delta l = l - l_0$$

"Ambiguity function": real for real and even pulse g[n]

 $\Re(\langle g_{m,l}[n], g_{m_0,l_0}[n] \rangle)$ is only non zero if $\Delta m + \Delta l + \Delta l \Delta m = 0 \mod 2$, which only occurs when $\Delta m = \Delta l = 0 \mod 2$.

Hence, g[n] should be designed to cancel those terms.

FBMC-OQAM lattice

Outline

Some basics Single-carrier systems **Classical multicarrier systems FBMC-OQAM** systems Principle Pros and cons "Why is it better?"

Pros and Pros "Le beurre et l'argent du beurre"

Advantages of MC systems: easy channel equalization...

High data rate

Filter well time-frequency localized:

Higher complexity... especially in certain scenarios. Need for more investigation, many open issues.

Wait... Good for us ! We like complex things ! That means that there is still a lot to do !

Evolution of telecommunication standards

2010... 2030

2020... 2040

4G modulation format might not be the best to address 5G challenges

Flexible spectrum utilization in 5G

Fragmented spectrum

 Image: Second second

1280MHz

1285MHz

Outline

Some basics Single-carrier systems Classical multicarrier systems FBMC-OQAM systems Principle Pros and cons My research "What am I doing?"

My research

Investigate the applicability of FBMC-OQAM modulations for 5G communication systems

-Channel estimation

-MIMO "What if we use multiple antennas at transmitter and/or receiver?"

-Massive MIMO "What if the number of those antennas grows very large?"

-High speed scenario: "What if the channel changes quickly?"

-Application to optical fiber: other issues and challenges

UNIVERSITÉ LIBRE DE BRUXELLES

I hope I convinced you ! We are note alone...

