
An Introduction to Deep Learning

Simon Carbonnelle
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The Machine Learning approach.
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Deep Learning is a sub-field of Machine Learning.
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The Machine Learning Flow.
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What data is available to learn from?

1. Supervised Learning
⇒ (X , y), inputs and outputs of a task

2. Unsupervised Learning
⇒ (X ), inputs of a task

3. Reinforcement Learning
⇒ (X , r), inputs and rewards for a task
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What type of model will I use?

1. Linear

2. Output ∈ [0, 1]

3. Tree-based

4. Probabilistic

5. ...
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How do I learn the final model?

1. Optimization with gradient descent

2. Optimization with closed form solution

3. Iterative algorithms

4. Heuristic search

5. ...
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Example: Linear regression

Supervised Learning: xi , yi

Linear: ŷi = Axi + b

minA,b
1
N

∑N
i=1(ŷi − yi )

2
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What about Deep Learning?

All three (see next section)

Deep Neural Networks
(DNN, CNN, RNN)
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The Artificial Neuron.
A very simple building block.

a = f (
∑n

j=1 wjxj)
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The Activation Function.

Sigmoid

f (z) = 1
1+e−z

Hyperbolic tangent

f (z) = ez−e−z

ez+e−z

Rectified Linear Unit

f (z) = max(0, z)
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Artificial Neural Networks.

a = f
(∑2

j=1 vj · f (
∑n

k=1 wkjxj)
)
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Deep Neural Networks.
Artificial Neural Networks with many layers.

Problem

Number of connections grows exponentially.
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Convolutional Neural Networks

Modelling local structure and translation invariance explicitly.
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Convolutional Neural Networks
Reducing the spatial dimensions.
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Convolutional Neural Networks

Assembling mutliptle feature maps and layers.
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Convolutional Neural Networks

Designing a network for digit recognition.
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Convolutional Neural Networks

Szegedy, C. et al., Going deeper with convolutions. CVPR 2015

VGG-Net (Visual Geometry Group, Oxford) has >130M parameters.
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Recurrent Neural Networks
Adding an internal memory state to Neural Networks.
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Recurrent Neural Network variants

The Long Short-Term Memory Network is the most popular:

The Gated Recurrent Unit (GRU) has very simple equations:
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RNNs for sequence to sequence tasks
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CNNs and RNNs avoid Feature Extraction.

The networks are designed to take advantage of the input structure
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What about Deep Learning?

All three (see next section)

Deep Neural Networks
(DNN, CNN, RNN)

minw C (w ,X , y)
Mini-batch gradient descent
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Learning algorithm

min
w

C (w ,X , y) = min
w

1

N

∑
Xi∈X ,yi∈y

Cs(w ,Xi , yi )

Mini-batch gradient descent
At each iteration, select B samples (X (b), y (b))
Apply gradient descent on:

min
w

1

B

∑
Xi∈X (b),yi∈y (b)

Cs(w ,Xi , yi )

⇒ w = w +
λ

B

∑
Xi∈X (b),yi∈y (b)

∇wCs(w ,Xi , yi )
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Computing the derivatives

a = f
(∑2

j=1 vj · f (
∑n

k=1 wkjxj)
)

Chain rule all the way! ⇒ The back-propagation algorithm
(Rumelhart et al., 1986)
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What about Deep Learning?

All three (see next section)

Deep Neural Networks
(DNN, CNN, RNN)

minw C (w ,X , y)
Mini-batch gradient descent

26



Pratical implementation of Deep Learning

Libraries do it for you:

I Automatic differentiation

I GPU optimized

I High-level libraries
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First part conclusion

I Machine Learning: Coding how to learn from data

I Deep Learning

I Data: Supervised, Unsupervised, Reinforcement

I Model: Artificial Neural Networks

I Algorithm: mini-batch gradient descent

I Deep Learning’s big advantage:
Network design to take advantage of input structure!!!
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What is Deep Learning and how does it work?
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Supervised Learning
Image Classification
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Supervised Learning
Speech Recognition

Achieving Human Parity In Conversational Speech Recognition
(Xiong et al.; 2016)

Word error rates (%). Trained on 2000 hours of data.
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Supervised Learning
Automatic translation

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation (Wu et al.; 2016)
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Supervised Learning
Image Captioning

Show and Tell: A Neural Image Caption Generator
(Vinyals et al.; 2016)
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Supervised Learning
Semantic Segmentation

Learning Deconvolution Network for Semantic Segmentation
(Noh et al.; 2015)
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Supervised Learning
Image Translation

Image-to-Image Translation with Conditional Adversarial Networks
(Isola et al.; 2016). Code: https://phillipi.github.io/pix2pix/
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Unsupervised Learning
Conditional Image Generation

Conditional Image Generation with PixelCNN Decoders
(van den Oord et al.; 2016)
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Reinforcement Learning
The Game of Go

Mastering the game of Go with deep neural networks and tree
search (Silver et al.; 2016)
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Memory-augmented neural networks
Learning to reason over complex data structures.

Hybrid computing using a neural network
with dynamic external memory (Graves et al.; 2016)
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1. What makes the Deep Learning Model good?
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Where does the Deep Learning model come from?
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A compromise needs to be found.

The best compromise is found when you use the right priors.
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The Deep Learning priors.

I Smoothness

I Compositionality
I Distributed Representations
I Multiple levels of Representations
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I Compositionality
I Distributed Representations
I Multiple levels of Representations

Used by all the machine learning methods.
Necessary for generalization.
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The Deep Learning priors.

I Smoothness

I Compositionality
I Distributed Representations
I Multiple levels of Representations

Concepts are hierarchically structured.

No-flattening Theorems: x1 · x2 · ... · xn
1 hidden layer: 2n neurons needed

log2 n hidden layers: 4n neurons needed
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2. Why does the learning algorithm work?
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Minimizing a non-convex function with gradient
descent...
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High-dimensional spaces

1. Saddle points are much more prevalent.
Proved for Gaussian Processes:
Ratio increases exponentially with N (Rasmussen, Williams; 2005)

2. Most local minima are close to the global minima (in value)
Proved for Gaussian Processes (Bray, Dean; 2007)

Observed experimentally for neural nets (Dauphin et al.; 2014):
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Last part conclusion

I Deep Learning uses a un-explored prior: Compositionality.

I Non-convex optimization in high-dimensional spaces
is not like we would expect.

Thanks!
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https://en.wikipedia.org/wiki/Linear_regression

Activation functions image:
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Max-pooling image:
http://cs231n.github.io/convolutional-networks/

Convolution image: http://neuralnetworksanddeeplearning.com/

LeNet image: http://deeplearning.net/tutorial/lenet.html

RNN images:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Keras code: https://keras.io/

Non-convex function image:
https://en.wikipedia.org/wiki/Maxima_and_minima

Part 3 content:
Yoshua Bengio’s talk: Deep Learning: Theoretical Motivations
Why does deep and cheap learning work so well? (Lin, Tegmark;2016)
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