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Abstract

This study examines the results of the NTIRE 2024 Chal-
lenge on Dense and Non-Homogeneous Dehazing. Innova-
tive methods were introduced and tested using a new im-
age dataset named DNH-HAZE. The DNH-HAZE dataset
comprises 50 pairs of authentic outdoor images showcasing
dense and non-homogeneous haze alongside corresponding
haze-free images of identical scenes. The haze was sim-
ulated using a professional setup designed to mirror real-
world hazy conditions. The competition attracted 374 par-
ticipants, with 16 teams presenting solutions for the final
evaluation phase. The proposed solutions showed the lead-
ing edge of image dehazing technology.

1. Introduction

Haze is a naturally occurring phenomenon that can
greatly reduce visibility in a scene with increasing distance,
leading to reduced image quality. This atmospheric effect
is triggered by the presence of small airborne particles that
affect environmental properties. As a result, hazy scenes of-
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ten exhibit low contrast, reduced saturation, altered colors,
and increased noise.

The restoration of visual information from hazy im-
ages is crucial for various applications including aerial
or ground surveillance, automatic traffic control, and au-
tonomous driving. Consequently, image dehazing has gar-
nered considerable interest over the past decade.

In recent years, there has been a significant surge of
interest in image dehazing [1, 7, 9, 10, 15, 29, 32, 34, 37,
48, 49], driven by the necessity of restoring visual infor-
mation from hazy images for diverse applications such
as aerial or ground surveillance, automatic traffic control,
and autonomous driving. More recently, deep learning ar-
chitectures have been employed to address image dehaz-
ing [18, 38, 45, 51, 64].

A primary obstacle in objectively verifying and classi-
fying dehazing algorithms stems from the absence of stan-
dardized test benchmarks. Assessing dehazing techniques
is often complex due to the lack of a reference image or
ground truth, as well as the absence of standardized algo-
rithms for error detection and measurement. Despite the
development of blind evaluation algorithms, their inconsis-
tent results may be attributed to insufficient validation on
real images.

Maintaining consistent lighting conditions and achiev-
ing pixel-by-pixel correspondence between reference and
hazy images are critical challenges in gathering such am-
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biguous images. Consequently, the initial image dehazing
datasets (e.g., D-HAZY [6]) were synthesized using infor-
mation about scene depth and scene attenuation parameters.

However, a more effective approach involves capturing
outdoor haze-free images first and then photographing the
same scene with haze introduced using specialized equip-
ment. The initial realistic image dehazing datasets were
unveiled during the NTIRE 2018 image dehazing chal-
lenge [2]. O-HAZE [8] comprises 45 pairs of outdoor im-
ages, while I-HAZE [4] consists of 35 pairs of indoor im-
ages. The hazy scenes in O-HAZE and I-HAZE datasets are
characterized by light and homogeneous haze. Similarly,
DENSE-HAZE [3] includes dense (homogeneous) hazy im-
ages along with corresponding ground-truth images and was
utilized in the NTIRE 2019 image dehazing challenge [16].
Conversely, the initial realistic non-homogeneous image de-
hazing datasets (NH-HAZE [11]) were employed for the
NTIRE 2020 [12] and 2021 [13] image dehazing chal-
lenges.

The NTIRE 2024 image dehazing challenge marks
progress in benchmarking single image dehazing tech-
niques. It leverages the DNH-HAZE dataset, which com-
prises 50 hazy images (with dense and non-homogeneouse
haze) along with their corresponding ground truth (haze-
free) images depicting the same scenes. DNH-HAZE fea-
tures real outdoor scenes with non-homogeneous haze pro-
duced using a professional haze setup. In the NTIRE 2024
image dehazing challenge, we conduct an objective eval-
uation by comparing the outcomes of competing methods
against the reference images from the DNH-HAZE dataset.

This challenge is one of the NTIRE 2024 Workshop 1

associated challenges on: dense and non-homogeneous de-
hazing [5], night photography rendering [17], blind com-
pressed image enhancement [59], shadow removal [50],
efficient super resolution [44], image super resolution
(×4) [21], light field image super-resolution [55], stereo im-
age super-resolution [52], HR depth from images of specu-
lar and transparent surfaces [61], bracketing image restora-
tion and enhancement [68], portrait quality assessment [20],
quality assessment for AI-generated content [39], restore
any image model (RAIM) in the wild [36], RAW image
super-resolution [22], short-form UGC video quality as-
sessment [35], low light enhancement [40], and RAW burst
alignment and ISP challenge.

2. Image Dehazing Challenge

The objectives of the NTIRE 2024 challenge on dense
and non-homogeneous image dehazing are: (i) to extend the
study and increase the performance in terms of image de-
hazing; (ii) to compare and promote the state-of-the-art so-
lutions; and (iii) to emphasize the availability of high qual-

1https://cvlai.net/ntire/2024/

ity datasets, such as the dense and non-homogeneous high
resolution image dehazing (DNH-HAZE) dataset.

2.1. Dense and Non-homogeneous (DNH-HAZE)
image dataset

The NTIRE 2024 image dehazing challenge was built
on the extended version of the former NH-Haze [11] and
HD-NH-HAZE [14] datasets. The DNH-HAZE dataset
comprises 50 hazy images along with their correspond-
ing ground truth (haze-free) images depicting the same
scenes. This dataset features authentic outdoor settings with
non-homogeneous haze created using professional haze-
generating equipment. To introduce haze into the outdoor
scenes, we utilized two professional haze machines capable
of producing vapor particles with diameters typically rang-
ing from 1 to 10 microns, similar to atmospheric haze parti-
cles. For image capture, we employed remotely controlled
Sony A7 III cameras.

To ensure consistency in unaffected areas of haze across
the image pairs, we manually adjusted and maintained con-
stant camera parameters, including shutter speed, aperture
(F-stop), ISO, and white balance, throughout consecutive
recording sessions. Camera settings such as aperture, expo-
sure, and ISO were determined using an external exposure
meter (Sekonic), while white balance was calibrated using
the medium gray card (18% gray) from the color checker.

The process of capturing each pair of images typically
required approximately 20 to 30 minutes to complete.

2.2. Evaluation

For the NTIRE 2024 dehazing challenge, we hosted a
Codalab competition. Participants were required to register
on the Codalab platform to access the data and submit their
produced results for evaluation according to the specified
phases.

Quantitative measures for evaluation included the Peak
Signal-to-Noise Ratio (PSNR) in decibels and the Structural
Similarity Index (SSIM) computed between the inferred re-
sult and the ground truth image. Higher scores indicate bet-
ter restoration fidelity to the ground truth image. Addition-
ally, the LPIPS perceptual measure was used to assess the
quality of the produced results.

The final ranking incorporated a Mean Opinion Score
(MOS), derived from a user study organized by the chal-
lenge organizers, which considered feedback provided by
teams during the final phase of the challenge.

2.3. Challenge Phases

1. Development phase: In this phase, the first 40 hazy
images of the DNH-HAZE dataset were made public
on the challenge platform [43], for the participants to
use them in the development process of their solution.



2. Validation phase: Another set consisting of 5 im-
ages was made public to the participants. Using the
validation server [43], without getting access to the
ground-truth images, the participants were able to val-
idate their solutions.

3. Testing phase: The test set, consisting of 5 images,
was published on the challenge platform. Using the
validation server [43], they uploaded their predicted
haze-free images for evaluation, thus being ranked in
terms of PSNR and SSIM [56]. Their best submis-
sion, along with the factsheet containing information
about the proposed solution, team members and the
software implementing the method, they prepared the
final submission. For the final ranking, a user study
was performed, and the Mean Opinion Score (MOS)
was used to further evaluate the perceptual quality of
the results produced by the ranked teams.

3. Challenge Results
The NTIRE 2024 Dense and Non-Homogeneous Dehaz-

ing Challenge attracted 374 registered participants, with 16
teams submitting their results, solution descriptions, avail-
able codes, and team descriptions for the final phase of the
challenge. The solutions from these teams are ranked in
Table 1. Participants proposed innovative solutions that ex-
hibited a high level of performance in terms of both recon-
struction fidelity and perceptual properties.

As shown in Table 1, the metric most closely correlated
with the user study results, quantified by the Mean Opinion
Score (MOS), is the Peak Signal-to-Noise Ratio (PSNR).
Perceptual property-based metrics such as LPIPS [65] and
SSIM [56] were utilized to distinguish between similar re-
sults. Notably, the top-performing solutions based on per-
ceptual metrics demonstrated consistent results in both re-
construction fidelity and perceptual properties, as antici-
pated.

4. Challenge Methods
4.1. USTC-Dehazers

The proposed method is based on a dual-branch model
structure from previous years as the overall framework [41].
First, for the transfer learning branch, Flash InternImage
[58] was employed,which incorporates Deformable Convo-
lution v4 (DCNv4), demonstrates superior and more rapid
long-range modeling capabilities, along with adaptive spa-
tial aggregation. This improved speed and efficiency sub-
stantially enhance the network’s dehazing capabilities.

Considering the high resolution (6000*4000) of the data
for this challenge, for the fine-detail extraction branch, a
lightweight model, Spatially-Adaptive Feature Modulation

(SAFMN) [47] is utilized. This decision is motivated by
SAFMN’s superiority in feature fusion. By introducing se-
lective attention mechanisms, features from different levels
are dynamically fused, enhancing the model’s perception of
crucial information.

Another challenge of this task is posed by the scarcity of
data samples, which often results in the model encounter-
ing overfitting issues. Although the problem is somewhat
mitigated by the introduction of the two-branch architec-
ture, it still constrains the further improvement of model
performance. The method proposed in [57] is employed to
introduce synthetic haze data, and a dynamic data enhance-
ment strategy is proposed to control the ratio of synthetic
data to real data. The above strategy effectively alleviates
the dilemma of having few training samples.

Compared to the traditional VGG perceptual loss,
EfficientVit-SAM [67] is introduced as a feature extractor
to construct a novel enhanced perceptual loss. This loss re-
duces the output haze residue to a greater extent.

The overall architecture is depicted in Fig.1.

4.2. Dehazing R

This team introduces DehazeDCT [28], which consists
of two modules and the structure diagram is shown as Fig. 2.

The first part of the model is the Dehazing module,
which aims to learn the color and texture mapping from
hazy to clean image. This module has two branches, where
the main branch is our proposed transformer-like architec-
ture based on deformable convolution v4 [58]. This design
has several advantages: (1) The convolution window of de-
formable convolution is smaller than large dense kernels
such as 31 × 31, which significantly reduces the compu-
tational cost. (2) Compared to the fixed kernels applied
in common CNNs, the deformable convolution dynami-
cally learns flexible receptive field (long- or short-range)
from training data. (3) The unnecessary softmax normal-
ization common in traditional deformable convolution [53]
is removed and significantly accelerates the forward speed.
Besides, the frequency branch similar to [27, 69] is also
adopted. The loss function utilized for optimizing of the
dehaizing module is shown as Eq. 1:

Lloss = L1 + αLSSIM + βLPercep + γLadv, (1)

where L1, LSSIM and LPercep represent L1 loss, MS-
SSIM loss, and perceptual loss, respectively. In addition,
the authors adopt the discriminator in [70] to calculate ad-
versarial loss (Ladv) for GAN training. α, β, and γ are
hyper-parameters and are set to 0.4, 0.01, and 0.0005, re-
spectively.

The second part of the proposed model is the Refine-
ment module. The motivation of introducing the refine-
ment module is to further recover the color and texture de-
tails and output realistic and visually pleasing results. In
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Figure 1. The network architecture of the solution proposed by team USTC-Dehazers.

Rank Team Username PSNR↑ SSIM↑ LPIPS↓ MOS↑ Params.(M) Runtime(s) Device Extra data
1 USTC-Dehazers LYD 22.943(1) 0.729(1) 0.352(7) 6.315(1) 150.16 19 RTX4090 NTIRE ’20, ’21, ’23
2 Dehazing R ZXCV, ylxb 22.84(2) 0.725(3) 0.346(6) 5.96(2) 256 3.42 A100 no
3 Team Woof Studentns 22.59(3) 0.726(2) 0.380(8) 5.79(4) 521 12 RTX4040 NTIRE ’20, ’21, ’23
4 ITB Dehaze monday21, baixike, bkdlrb 22.323(4) 0.714(4) 0.333(4) 5.70(5) 110 9 2xTITAN RTX NTIRE ’20, ’21, ’23
5 TTWT TTWT 21.932(5) 0.714(5) 0.334(5) 5.675(6) n/a n/a n/a n/a
6 DH-AISP DH-AISP 21.902(6) 0.714(6) 0.401(9) 5.81(3) 1418 n/a RTX 4080 n/a
7 BU-Dehaze Xingzhuo Yan 21.676(8) 0.709(7) 0.326(2) 5.22(9) 13.4 9 6xGTX1080Ti NTIRE ’20, ’21
8 RepD LuoXz 21.782(7) 0.706(8) 0.322(3) 4.83(10) 41.32 10.62 RTX3090 no
9 PSU Team Bilel Benjdira 20.538(12) 0.632(15) 0.267(1) 5.31(7) 161 100 A100 NTIRE ’20, ’21

10 xsourse xsourse 21.658(9) 0.695(11) 0.449(11) 5.28(8) 2.387 0.98 A6000 NTIRE ’21, ’23, NH-HAZE
11 Pixel warrior chm 20.747(11) 0.701(9) 0.413(10) 3.39(12) 16 119 RTX3090 no
12 LVGroup HFUT wjh0610 20.750(10) 0.698(10) 0.503(12) 3.57(11) 5 0.5 A40 NH-Haze20, NH-Haze21
13 KLETech-CEVI Lowlight Hypnotise Lowlight Hypnotise 17.978(14) 0.646(12) 0.521(13) 1.6(16) 20.5 0.9 RTX3090 no
14 Towards Sunshine melody, jwj 19.493(13) 0.635(14) 0.632(17) 2.83(14) 60.57 0.41 A6000 D-HAZY
15 KLETech-CEVI Dark Knights SampadaMalagi 17.978(15) 0.646(13) 0.521(14) 1.5(17) 14.5 1.8 RTX3090 no
16 HistoMask achintya971251, lohith kandukuri 14.475(16) 0.494(17) 0.628(16) 1.7(15) 1.71 66.4 A40 no

Table 1. Quantitative results of the NTIRE 2024 Dense and Non-Homogeneous Dehazing Challenge. Using naming convention n(m),
where n is the value of the metric evaluated and (m) is the rank in the list of submissions sorted by the evaluated metric value.

Figure 2. The network architecture of the solution proposed by team Dehazing R.

this part, the authors adopt a lightweight transformer-based
enhancement network based on Retinex theory [19]. This
module only has a few parameters and is optimized using
Eq. 2.

Lloss = L1 + 0.4 ∗ LSSIM + 0.01 ∗ LPercep. (2)

4.3. Team Woof

This work is based on ITB-Dehaze [41] and DWT-FFC-
GAN [69] approaches. Previous approaches usually em-

ploy in the end a single convolution layer and Tanh function.
However, this approach fails to achieve optimal imaging re-
sults because a single convolution layer is insufficient to ef-
fectively represent different image scales. To address this
issue, this method introduces a multi-scale Attention head.

The decoder outputs features represented by Y , a tensor
with dimensions B × C ×H ×W . In this representation,
B represents batchsize, C represents feature channels, and
H and W denote the height and width of the input image,



respectively. The multi-scale Attention head produces four
feature sets, denoted as [X1, X2, X3, X4], utilizing con-
volution kernels of varied sizes [1, 3, 5, 7]. These sets are
subsequently fused through a modified SKFusion [46] pro-
cess to create the aggregated feature XSK . This modifi-
cation involves replacing the original Squeeze and Excita-
tion mechanism with the Efficient Channel Attention mech-
anism for enhanced feature integration, that is, Improved
Selective Kernel Fusion in Fig. 3. Finally, the four feature
sets [X1, X2, X3, X4] and XSK are concatenated to form
the final feature set, which is then processed through a 7×7
convolution with padding of 3 and activated by a Tanh func-
tion.

4.4. ITB Dehaze

The authors propose a network with two
branches(Fig. 4): one utilizing a pre-trained Swin
Transformer V2 model [42] for feature extraction, and
the other focusing on learning from NH-Haze datasets
using lightweight data fitting with RCAN. The fusion
of results from both branches generates haze-free output
images, employing attention modules and skip-connections
in a multi-phase fine-tuning strategy. Initially, the best
model weights trained on NH-20, NH-21, and NH-23 was
fine-tuned on the NH-24 dataset, resulting in performance
enhancement. Further refinement was conducted on the
top-performing models from this stage using additional
datasets. Careful observation of results was necessary to
balance issues of low-resolution and haze. Interestingly, in-
creasing the number of training epochs did not consistently
improve results. The focus remained on achieving thorough
dehazing within limited time constraints, prioritizing
overall effectiveness over high-resolution output. Also, the
authors adopted Semi-Supervised Self-Supervised method
[63] to overcome the shortage of denser hazy images for
this year. This was used to generate pseudo labels for the
unlabeled data and train the model on it again using a low
learning rate and regularized setting for the model. We
utilize the optimal configurations from the basic supervised
baseline and adjust only the learning rate, weight decay,
and weight of the newly introduced loss. Utilizing such
a method introduces the availability of leveraging much
more unlabeled data for training and improvement.

4.5. TTWT

The method is inspired from the work of [41]. Compared
to the method proposed in [41], three main modifications
are made:

1. A customized loss function:

L = Lre+γA∗Ls+γB∗Lvgg+γC ∗Lsmi+γD∗Ladv (3)

where Lre is the smooth L1 loss, Ls is used to maximize the
value of SSIM, which is refereed as Multi-Scale Structure

Similarity (MS-SSIM). where Lvgg represents the VGG
loss, and Lsmi, Ladv represent the similarity loss and the
discriminator’s loss respectively.

2. The authors explored multi-channel feature extrac-
tion. The advantage of a multi-channel feature extraction
network lies in its ability to extract more comprehensive in-
formation from different channels and scales, which helps
enhance the effectiveness of image dehazing.

3. The authors initialized an AdamW optimizer to opti-
mize model parameters, with specific settings for the learn-
ing rate (0.00004), weight decay (1e-8), and beta parame-
ters (0.9, 0.999). Additionally, they set up a cosine learn-
ing rate scheduler, gradually reducing the learning rate over
the specified number of epochs (num epochs) according to
the cosine annealing schedule until reaching the minimum
learning rate of 2.5e-6. This ensures more stable and effec-
tive training of deep learning models.

4.6. DH-AISP

The method is based on a detailed dual-branch model
to process low-frequency and high-frequency images sepa-
rately, so that the color and details of the image can be better
processed. The network structure is shown in Fig. 5. For the
global branch, the authors propose learning the mapping re-
lationship between the original image and the hazy image
at a low resolution, which has a larger receptive field com-
pared to the original resolution and can recover information
damaged by the haze through surrounding regions. Then,
the results is sent to a global branch together with the in-
put into the second branch, and learn the details differences
caused by low-resolution images based on the global color
and contours. Finally, the results of the two branches are
blended to obtain the final result.

4.7. BU-Dehaze

The authors introduce a method that utilizes a two branch
structure [60] for single image dehazing, as shown in Fig.6.
Inspired by [30], the authors further develop a data pre-
processing technique aimed at aligning the distribution of
augmented data more closely with that o the target data.
In the first branch of the model, the Swin Transformer V2
model [42] and self-attention mechanism, which has been
pre-trained on the ImageNet dataset, is employed to ex-
tract pertinent multi-level features from hazy images. The
choice of the Swin Transformer, proven to surpass tradi-
tional CNN-based architectures in performance, serves as
the backbone for our feature extraction process. Embrac-
ing the concept of transfer learning, the authors initial-
ize the Swin Transformer with the ImageNet pre-trained
model, thereby enabling our system to leverage knowledge
acquired from prior low-level tasks. In contrast, the sec-
ond branch, built from scratch, employs the U-Net architec-
ture, which complements the first by focusing exclusively
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Figure 3. The network architecture of the solution proposed by team Team Woof.

Figure 4. The network architecture of the solution proposed by team ITB Dehaze.

on the domain of target data. This synergistic approach al-
lows for the specialized treatment of target data, enhancing
the model’s overall effectiveness in dehazing. The fusion
tail of our model aggregates outputs from both branches,
culminating in the production of clear, dehazed images.

4.8. RepD

The dehazing model named RepD (see Fig. 7) is built by
combining a UniRepLKNet [26] subnet and an [66] RCAN
subnet. Specifically, the authors utilized the UniRepLKNet
subnet, where the concept of structural reparameterization
is introduced to enhance feature extraction for dehazed im-
ages and improve inference speed. RCAN is employed as



Figure 5. The network architecture of the solution proposed by team DH-AISP.

Figure 6. The network architecture of the solution proposed by team BU-Dehaze.

the other subnet to preserve fine details in the recovered im-
ages without downsampling or upsampling in resolution.

4.9. PSU Team

The authors developed a novel dual-phase architecture,
named High-Resolution Image Dehazing and Enhancement
(HRDE), designed to tackle this issue comprehensively (see
Fig. 8). The first phase of HRDE employs a latent diffu-
sion model, specifically tailored for extracting haze from
high-resolution images, serving as the cornerstone for haze
removal. However, diffusion models often suffer from dis-
tortion and noise exacerbation due to extended training pe-
riods and interactions with latent spaces. To address these
drawbacks, the subsequent phase of HRDE utilizes a Lapla-
cian Generative Adversarial Network (GAN), engineered to

enhance image quality and correct distortions introduced in
the first phase. This multi-layer Laplacian GAN approach
leverages Laplace pyramids to exploit multi-scale image
representations, thereby effectively preserving and enhanc-
ing structural details. This strategy ensures a better recovery
of fine details without introducing noise or artifacts.

4.10. xsourse

The proposed method is based on method introduced in
[31]. Due to the instability of GAN network training, the
authors added a standard deviation loss with a coefficient
of 0.01 to the original implementation of multiple losses
including L1 loss, SSIM loss, etc. The introduction of stan-
dard deviation loss can effectively supervise the color dis-
tribution, making the GAN training process more stable and



Figure 7. The network architecture of the solution proposed by team RepD.

Figure 8. The network architecture of the solution proposed by
team PSU Team.

converging faster. At the same time, the supervision of stan-
dard deviation on pixels can make the restored picture more
vivid in color and closer to the original ground truth.

4.11. Pixel warrior

The team proposes a Transformer for Image Dehazing
(TID) as shown in Fig 9. The transformer module includes
both global feature extraction and local feature extraction

modules. In response to the problem of insufficiently clear
features in local regions, the team has designed a global fea-
ture extraction module to capture overall information. At
the same time, they have also designed a local feature ex-
traction module to obtain more refined local features.

4.12. LVGroup HFUT

The proposed architecture is strategically based on the
U-Net framework. To equip the model with a multi-
dimensional perspective, the team generates outputs from
foggy images across various sizes. This approach not only
enriches the model’s input data but also ensures that the de-
coded outputs closely mirror the grundtruth of the images
by presenting restored results in multiple sizes. Regarding
the loss function, the authors meticulously compute both L1
and FFT losses for outputs at each size.

The proposed model undergoes a significant enhance-
ment in the encoding and decoding phases. They replace
conventional residual blocks with the more sophisticated
Residual Dense Block (RDB) modules [54], substantially
improving the model’s capacity for nuanced feature extrac-
tion. Furthermore, to foster a richer interplay of features
across different scales, the authors integrate the SKFF mod-
ule [62], thereby facilitating a more effective synthesis of
information from various scales.



Figure 9. The network architecture of the solution proposed by team Pixel warrior.

Figure 10. The network architecture of the solution proposed by team LVGroup HFUT.

4.13. KLETech-CEVI Lowlight Hypnotise

The proposed MFNN framework includes three main
modules: the hierarchical spatio-contextual (HSC) feature
encoder, Global-Local Spatio-Contextual (GLSC) block,
and hierarchical spatio-contextual (HSC) decoder, as shown
in Fig. 11. Typically, image restoration/enhancement net-
works employ feature scaling for varying the sizes of the
receptive fields. The varying receptive fields facilitate learn-
ing of local-to-global variances in the features. With this
motivation, this method learns contextual information from
multi-scale features while preserving high resolution spatial

details. This is achieved via a hierarchical style encoder-
decoder network with residual blocks as the backbone for
learning. The proposed MFNN optimize the learning of
MFNN with the proposed LMFNN and is given as,

LMFNN = (α∗L1)+(β ∗LV GG)+(γ ∗LMSSSIM ) (4)

where, α, β, and γ are the weights. We experimentally set
the weights to α = 0.5, β = 0.7, and γ = 0.5. LMFNN

is a weighted combination of three distinct losses inspired
from [23–25, 33].



Figure 11. The network architecture of the solution proposed by team KLETech-CEVI Lowlight Hypnotise.

4.14. Towards Sunshine

The authors introduced a dehazing network based on
self-classification guidance. Specifically, the network con-
sists of two parts, the dehazing subnetwork and the classi-
fication subnetwork. As shown in Fig. 12, in the training
process, the dehazing sub-network is first trained, and after
it has good dehazing ability, the clean image, foggy image
and dehazing output image of the training data are used to
perform the three-classification task. The total loss of the
network is:

Losstotal = lossdehazing + λ ∗ losscls (5)

where lossdehazing is the loss of the dehazing subnetwork.
losscls is the loss of the classification subnetwork, and λ is
the weight parameter which was setting to 0.05. The co-
evolution of the two networks and the backpropagation pro-
cess of the classification sub-network can promote the im-
provement of the performance of the dehazing sub-network.
The classification subnetwork selected in this competition
is the Alexnet network pre-trained on the ImageNet dataset
, and the classification subnetwork can be matched with
any dehazing subnetwork, and the dehazing subnetwork se-
lected in this competition is an end-to-end feature fusion
attention network.

4.15. KLETech-CEVI Dark Knights

The proposed MFNN framework includes three main
modules: the hierarchical spatio-contextual (HSC) feature
encoder, Global-Local Spatio-Contextual (GLSC) block,
and hierarchical spatio-contextual (HSC) decoder, as shown
in Fig. 11. Typically, image restoration/enhancement net-
works employ feature scaling for varying the sizes of the

Figure 12. The network architecture of the solution proposed by
team Towards Sunshine.

receptive fields. The varying receptive fields facilitate learn-
ing of local-to-global variances in the features. With this
motivation, this method learns contextual information from
multi-scale features while preserving high resolution spatial
details. This is achieved via a hierarchical style encoder-
decoder network with residual blocks as the backbone for
learning. We optimize the learning of MFNN with the pro-
posed LMFNN and is given as,

LMFNN = (α ∗ LCharbonnier) + (β ∗ LFFTLoss) (6)

where, α, and β, are the weights. We experimentally set the
weights to α = 0.5, and β = 0.7, LMFNN is a weighted
combination of three distinct losses. LCharbonnier loss to
minimize error at pixel level, FFTLoss to efficiently restore
contextual information between the ground-truth image and
the output image. The aim here is to minimize the weighted



Figure 13. The network architecture of the solution proposed by
team HistoMask.

combinational loss LMFNN given as,

L(θ) =
1

N

N∑
i=1

∥ MFNN(xi − yi) ∥LMFNN
(7)

where, θ denotes the learnable parameters of the proposed
framework, N is the total number of training pairs, x and y
are the input and output image respectively, and MFNN(·)
is our proposed framework for haze removal in images.

4.16. HistoMask

The method (see Fig. 13) contains 2 stages:
MASK : Each image is processed at 4 scales like a typ-
ical U-net with encoder and decoder convolution blocks,
hence time complexity: O(n2k2). The space complexity is
O(n2), since the biggest contribution is storing the 512x512
image and the rest are continually down-sampled versions
of the same.
Histogram Matching and Gamma Correction : The
global histogram is computed and stored. The histogram of
the image is computed taking a time complexity of O(n2)
and the matching is performed needing a complexity of
O(n2). The gamma correction again takes a time complex-
ity of O(n2). The space complexity is once again O(n2)
for both histogram matching and gamma correction.

5. Conclusion
During the NTIRE 2024 Image Dehazing Challenge, 374

participants engaged in the competition, leading to the final
phase where 16 teams were distinguished for their achieve-
ments. These teams innovatively employed diverse archi-
tectures and methods, surpassing prior benchmarks and
leveraging past design concepts as foundational elements,
showcasing significant potential for progress.

The final team rankings were determined by the Mean
Opinion Score derived from our user study. The accuracy of
the image recovery played a pivotal role in these rankings,
exhibiting the highest correlation with user feedback on the
results presented.
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