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Abstract

This work reviews the results of the NTIRE 2021 Chal-
lenge on Non-Homogeneous Dehazing. The proposed tech-
niques and their results have been evaluated on a novel
dataset that extends the NH-Haze datset. It consists of addi-
tional 35 pairs of real haze free and nonhomogeneous hazy
images recorded outdoor. The nonhomogeneous haze has
been introduced in the outdoor scenes by using a a profes-
sional setup that imitates the real conditions of haze scenes.
327 participants registered in the challenge and 23 teams
competed in the final testing phase. The proposed solutions
gauge the state-of-the-art in image dehazing.

1. Introduction
Haze is a natural process that affects image quality by

drastically reducing visibility in the scene as distance in-
creases. This atmospheric phenomenon is manifested in the
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cuti, Florin-Alexandru Vasluianu and Radu Timofte are the NTIRE 2021
challenge organizers. The other authors participated in the challenge.
Appendix.A contains the authors’ team names and affiliations.
https://data.vision.ee.ethz.ch/cvl/ntire21/

presence of small particles in the air, which change signifi-
cantly the properties of the environment. As a consequence,
the hazy scenes are characterised by low contrast, low satu-
ration, color change or additional noise.

Recovering visual information from hazy images is im-
portant for various applications, such as aerial or ground
surveillance, automatic traffic control and automatic driv-
ing. Therefore, image dehazing has attracted significant in-
terest in the last decade [25, 55, 28, 56, 37, 9, 2, 43, 7, 10].
Recent methods using CNN [17, 51, 69, 44, 58] have ex-
panded the initial solutions built either on the physical
model, or on improving the visual qualities of the image.

Despite of the large number of viable solutions, a sig-
nificant current problem for the objective verification and
classification of dehazing algorithms is the lack of standard-
ized test benchmarks. In the absence of the reference image
(ground truth), a common problem in the evaluation of the
dehazing techniques is given by the fact that there are no
standard algorithms for detecting and measuring errors. The
blind evaluation algorithms developed so far do not always
generate consistent results because they have also not been
validated on real images.

The first image datasets were synthesized and used in-
formation about scene depth and scene attenuation param-
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eter. FRIDA [57] dataset designed for Advanced Driver
Assistance Systems (ADAS) was developed using 66 syn-
thetic ground images of various traffic scenes. D-HAZY [6]
was generated using over 1400 real images and their known
depth maps, by employing the Koschmieder’s [36] light
propagation model.

An essential issue that makes extremely difficult to col-
lect such hazy image, is the maintenance of lighting condi-
tions, as well as the pixel-by-pixel correspondence between
the reference and the hazy image.

Therefore, it is very complicated to record images with
and without haze in the same lighting conditions and with-
out changes in the scene. A feasible solution that is prob-
ably the most realistic one is to record haze-free natural
images and then to record exactly the same scene with
haze introduced in the scene by dedicated equipment. The
first such image dehazing datasets were introduced at the
NTIRE2018 [3] image dehazing challenge. O-Haze [8]
contains 45 outdoor images and the corresponding images
affected by haze, and I-Haze [5] contains 35 indoor im-
ages and similar scenes affected by haze in a controlled
way. Similarly, DENSE-HAZE [4] contains dense (ho-
mogeneous) hazy and ground-truth images and was em-
ployed by the NTIRE 2019 image dehazing challenge
NTIRE2019 [14].

The NTIRE 2021 image dehazing challenge represents
a step forward in benchmarking single image dehazing.
It is based on an extension of the NH-Haze [11] dataset
that was used in the NTIRE 2020 image dehazing chal-
lenge [12]. The NH-Haze2 consists of 35 hazy images and
their corresponding ground truth (haze-free) images of the
same scene. NH-Haze2 contains real outdoor scenes with
non-homogeneous haze generated using a professional haze
setup. We perform an objective evaluation by comparing the
restored output of the methods with the ground truth images
of the dataset.

This challenge is one of the NTIRE 2021 associated
challenges: nonhomogeneous dehazing [13], defocus de-
blurring using dual-pixel [1], depth guided image relight-
ing [24], image deblurring [48], multi-modal aerial view
imagery classification [40], learning the super-resolution
space [46], quality enhancement of heavily compressed
videos [65], video super-resolution [54], perceptual image
quality assessment [27], burst super-resolution [15], high
dynamic range [49].

2. Image Dehazing Challenge
The objectives of the NTIRE 2021 challenge on non-

homogeneous image dehazing are: (i) to gauge and push
the state-of- the-art in image dehazing; (ii) to compare and
promote the sota solutions; and (iii) to promote the non-
homogeneous image dehazing dataset (NH-Haze [11] and
its extension used in this workshop).

2.1. Nonhomogeneous image dataset

The NTIRE 2021 image dehazing challenge was built on
the extended version of the former NH-Haze [11] dataset.
The NH-Haze2 consists of 35 hazy images and their cor-
responding ground truth (haze-free) images of the same
scene. NH-Haze2 contains real outdoor scenes with non-
homogeneous haze generated using a professional haze
setup. To introduce haze in the outdoor scenes we employed
two professional haze machines which generate vapor par-
ticles with diameter size (typically 1 - 10 microns) simi-
lar to the atmospheric haze particles. For recording images
we used sony A7 III cameras remotely controlled. To en-
sure consistency between the unaffected areas of the haze
in the image pairs, the camera parameters (shutter-speed /
exposure-time, the aperture / F-stop, the ISO and the white-
balance settings) were adjusted manually and then kept un-
changed between the two consecutive recording sessions.
We set the camera parameters (aperture-exposure-ISO), us-
ing an external exposure meter (Sekonic) and for white bal-
ance we used the medium gray card (18percent gray) of
the color checker. The process of recording a pair of im-
ages took about 20-30 minutes.

2.2. Evaluation

For the NTIRE 2021 dehazing challenge we set a Co-
dalab competition. In order to access the data and submit
produced results to the evaluation server, each participant
had to register to the Codalab competition and follow the
phases set.

The Peak Signal-to-Noise Ratio (dB) and the Structural
Similarity index (SSIM) computed between the inferred re-
sult and the ground truth image are the quantitative mea-
sures. The higher the score is, the better the restoration fi-
delity to the ground truth image is. Additionally, the LPIPS
perceptual measure was deployed, for assessing the quality
of the produced results. The final ranking was done after in-
troducing the Mean Opinion Score (MOS), as a result of an
user study set by the challenge organizers, with the results
provided by the teams in the final phase of the challenge.

2.3. Challenge Phases

1. Development phase: In this phase, the first 25 images
of the NH-Haze dataset were available on the chal-
lenge website. The participants used them in order to
develop their proposed solutions.

2. Validation phase: Another set consisting of 5 images
was made public on the challenge website. The par-
ticipants used the images to validate their solutions,
by submitting the produced results to the validation
server.

3. Testing phase: The participants had access to the last
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set of 5 images. They used the images to do infer-
ence on their proposed solution. The produced results
were uploaded to the testing server, along with the fact-
sheet containing information about team contribution,
team members, codes and testing phase results. For
the final ranking, results were analyzed in both fidelity
an perceptual terms. Finally, the Mean Opinion Score
(MOS) was used to differentiate between similar re-
sults in terms of both fidelity and perceptual metrics.

3. Challenge Results
The challenge registered 327 participants, and a num-

ber of 23 teams were ranked in the final phase. Each team
had to prepare their submission consisting of codes, testing
phase results and a factsheet containing identification infor-
mation and a description of their proposed solution. Section
4 offers a description for each of the solutions ranked in the
final phase of the challenge.

The values for the deployed metrics, computed for each
submission, are given in the Table 1, while results charac-
terized by the best value for each of the deployed metrics
were given in the Figure 1.

As you can observe in Table 1, The metric with the high-
est correlation to the Mean Opinion Score (MOS) is the
PSNR, while LPIPS and SSIM can be used to differenti-
ate similar results. However, the results corresponding to
the top performing solutions in terms of perceptual metrics
have, as expected, high SSSIM values and low LPIPS dis-
tance.

Architectures and main ideas
Excepting Team BUUMASRC, all the remaining solutions
used end-to-end deep learning, employing GPU(s) for both
training and inference. Table 1 can be used as reference
point when comparing solutions complexity, as the infer-
ence time was provided for the majority of the ranked solu-
tions.

Team BUUMASRC proposed an algorithm based on a
light scattering model to estimate a dehazed image, us-
ing image level statistics and physical models for various
mechanisms. Their algorithm offers a better estimation over
the atmospheric light and participating media transmittance,
based on the dark channel prior.

Ideas similar to ensemble learning were deployed by the
majority of the top scoring teams, to reduce the level of vari-
ance produced by the limited amount of data. Many teams
used branched structure to achieve a better restoration of
the high-level details. Solutions developed in the adversar-
ial framework were proposed, one of them being the Adap-
tive Dehazing Network, proposed by the challenge winner,
Team DWT dehaze.

In terms of minimized objectives, the majority of the
teams used the L1 loss, and a SSIM based loss, as those
metrics were used for the public leaderboard provided on

DWT dehaze - best PSNR value

NTUGICE LINLAB - best SSIM value

Mac dehaze - best LPIPS values

Ground truth images

Figure 1: Visual results provided for best performing
method on each of the metrics deployed. Best zoom-in on
screen for a better view.

the challenge website. Perceptual losses employing pre-
trained feature extractors were also widely used by chal-
lenge participants. Similar to the last year challenge, they
also deployed losses based on Fast Fourier Transform (FFT)
or knowledge-transfer losses. Gradient or laplacian losses,
or metrics defined in the Lab color space were successfully
employed by some participants, to improve the quality of
their results in the high-frequency domain.

Some of the other ideas that will be encountered when
reading the Section 4 are the usage of attention structures,
where the majority of the teams came with existing methods
or proposed novel designs, the multi-scale extracted fea-
tures and residual learning. The Trident Dehazing Network
(TDN), the winner of the 2020 competition, served as one
of the building blocks for many of the ranked solutions, and
for some of the top scoring teams.

4. Challenge Methods

4.1. DWT dehaze

Inspired by [42, 50, 38], this team proposed a novel two-
branch generative adversarial network, namely DW-GAN.
The network structure is shown in Figure 2. For the first
branch, unlike supervising the training process by a fre-
quency domain loss [41], they proposed the idea of directly
embedding the frequency domain knowledge into the de-
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Participant Results Solution details
Fidelity Perceptual quality Runtime GPU/ extra deep learning loss

Team User PSNR↑ SSIM↑ LPIPS1 ↓ LPIPS2 ↓ MOS↓ img.[s] CPU data ens. framework

Top perceptual quality solutions
DWT dehaze eason97 21.0761 0.8393 0.169 0.203 1 1.558 1080Ti NH-HAZE-20 - Pytorch L1, LSSIM , LGAN , Lperc

NTUGICE LINLAB Jerome Chang 20.8983 0.8441 0.175 0.194 2 60 Tesla V100 NH-HAZE 20 8x Pytorch n/a
Mac dehaze ken103 21.0182 0.8375 0.168 0.196 3 0.089 Tesla V100 NH-HAZE-20 - Pytorch L1, LSSIM , LGAN , Lperc

Bilibili AI & FDU splinter23 20.5985 0.82311 0.182 0.212 4 0.64 1080Ti NH-HAZE 20 8x Pytorch L1, LFFT , LBReLU

buaa colab buaa colab 20.6194 0.8347 0.202 0.220 5 1.77 4x RTX2080Ti - 8x Pytorch L1, LLab, LLaplacian, LKT

TJUVIPLab WangYudong 20.5376 0.8356 0.183 0.205 6 8.0 RTX3090 NH-HAZE 8x Pytorch L1, LSSIM , LGradient, Lperc

O-HAZE
DENSE-HAZE

TeamInception swz30 20.0139 0.8328 0.177 0.205 7 1.4 4x Tesla V100 - 8x Pytorch L1, LSSIM , LV GG

iPAL-GridFFA haichuan 19.56712 0.8392 0.178 0.194 8 1.01 RTX2080Ti NH-HAZE Pytorch L1, smoothed L1, LSSIM , LGAN

VIPLab Yangwj 19.67510 0.82410 0.173 0.203 9 0.042 1080Ti NH-HAZE - Pytorch L1, Lperc

Medium perceptual quality solutions
debut kele debut kele 20.2647 0.8329 0.200 0.219 10 n/a RTX2080Ti - - Pytorch L1, LSSIM , Lstd

alibaba-cipp alibaba-cipp 20.2318 0.80216 0.178 0.220 10 9.0 8x Tesla V100 Place2, O-HAZE, DENSE-HAZE - Pytorch n/a
DeepBlueAI DeepBlueAI 18.97017 0.81613 0.197 0.210 10 1.0 4x Tesla V100 - - Pytorch L1, Lperc., L2
team Dou xiaodou 19.65411 0.81214 0.187 0.208 11 0.94 GPU - - Pytorch n/a
LDGLI YiqunChen1999 19.52213 0.8384 0.192 0.207 11 1.13 RTX3090 NH-HAZE, hand-designed - n/a L2, LSSIM

NTUDS-LINLAB ChangSung 19.28814 0.81712 0.220 0.234 11 n/a GPU NH-HAZE n/a Pytorch n/a
VIP UNIST Eun-Sung 19.15615 0.80915 0.205 0.227 11 0.034 Titan RTX I-HAZE - Pytorch n/a

O-HAZE
DENSE-HAZE

NH-HAZE

Low perceptual quality solutions
SP-CET Geethu 19.05016 0.80017 0.191 0.222 12 0.409 GPU - - n/a n/a
Dehaze aicte CHIPPYMMANU 18.30218 0.73322 0.295 0.309 12 1.0 GPU - - Keras n/a
HZLLC BFZhang 18.04319 0.74221 0.313 0.295 12 0.018 RTX2060 - - Pytorch L2, Lperc., Lt.v.

WaveFull XM R0use 17.97420 0.77120 0.271 0.286 13 10.4 Titan Xp - - Pytorch n/a
SVNIT NTNU Team kalpesh svnit 17.90521 0.78818 0.248 0.264 13 24.0 Quadro P5000 O-HAZE, I-HAZE, Dense-HAZE - Pytorch L1
CVML Lab vishalchudasama 17.65722 0.78319 0.247 0.260 13 1.2 Titan X Pascal O-HAZE, I-HAZE, Dense-HAZE - Tensorflow L1
BUUMASRC BUUMASRC. 12.00623 0.62323 0.467 0.445 13 445.37 CPU O-HAZE - Matlab n/a
no processing baseline 10.936 0.565 0.588 0.489 0.0

Table 1: NTIRE 2021 NonHomogeneous Dehazing Challenge preliminary results in terms of PSNR, SSIM, LPIPS [72], on
the NH-Haze test data. For LPIPS, both Alex-net(LPIPS1) and VGG16 (LPIPS2) pretrained model were used as feature
extractors. The Mean Opinion Score (MOS) was added to determine the final ranking of the challenge. The results were
split into three categories, with respect to their perceptual properties. Note that the perceptual differences can be rather subtle
when comparing results from top scoring teams.

hazing network. They follow the U-Net [52] architecture to
construct the first branch, as the wavelet net. It has a en-
coder that is linked to the decoder by massive skip connec-
tions. To meet the requirements for extracting frequency do-
main knowledge, they adopt five DWT downsampling mod-
ules and six convolutional downsampling layers to build the
encoder. Then, the spatial and frequency representations are
concatenated as the input of the downsampling process.

In the second branch, they use Res2Net [52] as encoder.
Observing that the feature representations learned on a pre-
trained task can have positive impact on the target task
[23, 67], they use the ImageNet [22] pretrained weights as
initialization.

In the decoder module, they used pixel-shuffle layer for
upsampling, which makes the size of the recovered feature
maps to gradually increase to the original resolution. Chan-
nel and pixelwise attention blocks are employed after each
pixel-shuffle layer to identify the dynamic hazy patterns.
Skip connections are added between encoder and decoder
as shown in Figure 2.

Finally, they add a simple 7× 7 convolution layer as fu-
sion operation to map the features from two branch to clear
images.

The loss functions adopted in their work aims to balance
the model behaviour, DW-GAN learning to generate low
distortion and high perceptual quality images.

Therefore, they introduced the final loss blend function
as stated in Equation 1, where α = 0.2, β = 0.001 and
γ = 0.005 are the weights for each of the loss functions.
L1 denotes L1 loss, LSSIM represents MS-SSIM loss [59],
Lperceptual is perceptual loss [35] and, for the adversarial
loss Ladv , they adopt the discriminator in [76].

Ltotal = L1 + αLSSIM + βLperceptual + γ4Ladv (1)

The overall network architecture is shown in Figure 2.

4.2. NTUGICE LINLAB

To cope with the property of nonhomogeneous haze,
they proposed Adaptive Dehazing Network (ADN). This is
a two-branch dehazing network which aims to adaptively
process the region covered by thin haze or heavy haze.
As shown in the Figure 3, ADN consists of two branches,
the Primary Branch and the Enhanced Branch. While the
Primary Branch manage the region covered by thin haze,
the Enhanced Branch will focus on making up for the re-
gion Primary Branch doesn’t dehaze well, which is mostly
severely contaminated area.

Besides, to blend the output of the two branches, they
design the Weight Map Generator. This has the role of gen-
erating a two-channel weight map used to blend the out-
puts of the two branches. So, the output of each branch will
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Figure 2: The network structure of the proposed method. The generator is a two-branch network, which consists of Wavelet
Net and Attention Net. The same color used in the rectangles denotes the same operation. ’Conv’, ’BN’, ’TConv’, ’MP’,
’PS’, ’AP’, ’LReLu’ denotes convolution, batch normalization, transpose-convolution, max-pooling, pixel-shuffle, average-
pooling, and leakyReLu. ’B2N’, ’C-PA’ and ’DWT’ denote bottle2neck, channel and pixel-wise attention, and discrete
wavelet transform modules respectively.

be element-wise multiplied with their corresponding weight
map and the final result will be produced as the sum of the
weighted outputs.

The model of the encoder-decoder structure of the pri-
mary branch is based on the Perceptual Pyramid Deep Net-
work [70]. Both branches share the same encoder, but they
own their individual decoders. The difference between the
decoders is that normal convolution was replaced by the
dilated convolution kernel, attempting to enlarge receptive
field of the enhanced decoder. This enables the Enhanced
Branch to gain ability to deal with heavy haze. Moreover,
some attention modules such as CBAM[61] were added,

combining spatial attention and channel attention to let the
decoders concentrate the training procedure on the most im-
portant features extracted by the encoder.

4.3. Mac dehaze

Mac dehaze team proposes a two-branch neural network
for non-nomogeneous dehazing via ensemble learning to
deal with the above mentioned problems. The structure di-
agram of the network is shown in Figure 4.

The first branch, namely the transfer learning sub-net,
is built upon a ImageNet [21] pretrained Res2Net[26] [62].
It aims to extract robust global representations from input
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Figure 3: Information flow along NTUGICE-LINLAB pro-
posed model.

images with pre-trained weights. To achieve this, instead
of skip connecting all resolution features from encoder to
decoder, they omitted the skip connection of full resolu-
tion features. This physically ensures that the fine details
of input images would not be preserved, and thus, forces
the network to focus more on extracting robust global rep-
resentations. As a result, the ImageNet pretrained branch
can help address the problem of lacking training data.

Besides this, in favor of the strong mapping capability of
residual channel attention network (RCAN) [73], they de-
signed the current data fitting sub-net using RCAN as sec-
ond branch. The current data fitting branch has five residual
groups, and each group has ten residual blocks. Unlike the
original network setting [73] that does the downsampling
of the input images, the second branch always maintains
the original resolution of the inputs and avoids using any
downsampling operation. This adjustment avoids the loss
of fine detailed features. Since the sub-network is trained
from scratch and built with full-resolution purpose, it would
fit on the current data and perform well on the specific train-
ing image domain.

The final output of the entire network is produced by a
fusion layer. Specifically, the fusion layer takes the con-
catenation of features from the branches and then maps the
features to clear outputs.

Moreover, adversarial loss is proved to be effective in
helping restore photo-realistic images [38]. Especially for
the small-scaled dataset, the pixelwise loss function usually
fails to provide sufficient control to supervise the network
training for recovering the photo-realistic details.

Therefore, they implemented the adversarial loss with
the discriminator in [76]. The overall loss function is a lin-
ear combination of smooth L1 loss Ll1, MS-SSIM loss[60]
LSSIM , perceptual loss[35] Lperceptual, and adversarial
loss Ladv , as shown in Equation 2.

L = γ1Ll1 + γ2LSSIM + γ3Lperceptual + γ4Ladv (2)

4.4. Bilibili AI & FDU

They use the Trident Dehazing Network[41] proposed in
NTIRE2020 NH-Dehazing challenge as their model. The
architecture is depicted in the Figure 6. Different from the
proposed paper, they are training their model using the im-
age pairs with a small size (256×256) in the early phase of
the training procedure. Then the resolution will be progres-
sively increased to a higher dimension (384×384), as the
training procedure continues.

4.5. buaa colab

Their contribution is the modified version of Knowl-
edge Transfer Network [62], namely, the Super Resolution
Knowledge Transfer Dehazing Network (SRKTDN). As is
shown in Figure 7, the network described contains two main
components, the main network and teacher network. The
main network consists of a dehaze network and a super-
resolution network.

The dehaze network uses Res2Net101 as encoder, and
PixelShuffle for the upsampling operation. The network
uses an attention mechanism combining channel attention
blocks and pixel attention blocks to restore the haze-free
image [50].

They used a teacher network to generate low-level fea-
ture maps. The teacher network is trained by ground truth
pairs of the dataset, in order to capture the necessary infor-
mation for image restoring. Compared to the Knowledge
Transfer Network, there are structural differences between
the teacher network and the dehaze network. While the de-
haze network uses Res2Net101 as encoder to ensure capa-
bility of haze removal, the teacher network uses ResNet18
as the encoder. This will further enhance the generaliza-
tion ability and reduce the training time and GPU memory
consumption.

Meanwhile, inspired by TDN[41], they used a super-
resolution network to enhance detail restoration. The super-
resolution network uses three Wide Activation Block to cap-
ture details.

The training objective used is a blending of L1 loss,
Laplacian loss, Lab-color space L2 loss and the Knowledge
Transfer loss.

L1 loss is calculated as states in Equation 3, where I and
J refer to the hazy image and ground-truth haze free image,
respectively, and M(·) stands for the main network.

L1 = |J −M(I)|1 (3)

Laplacian loss uses Laplacian pyramid representation of
the image and calculates L1 loss for 5 levels[16]. Lj(·) in
the Equation 4 is the j-th level of the Laplacian pyramid
representation. Laplacian loss focuses on edge of the image
and prevent the output from being blurry.
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Llap =

5∑
j=1

22j |Lj(J)− Lj(M(I))| (4)

L2 loss of Lab color space is used to refine color of
the output image. Different from L1 loss, L2 loss pay
more attention to pixels that have a relatively high devi-
ation from the ground-truth image. Besides, unlike RGB
color space, Lab color space is designed to resemble human
vision. Lab(·) in the Equation 5 refer to the RGB-to-Lab
transformation.

LLab = |Lab(J)− Lab(M(I))|2 (5)

Similar to the method proposed in [62], the Knowledge
Transfer loss is L1 loss between feature map of dehaze
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network and the output of the teacher network. Knowl-
edge Transfer loss helps the Res2Net101 encoder to imitate
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Figure 7: Architecture of buaa colab proposed architecture.

Figure 8: Details over the attention modules used by
buaa colab team.

the teacher’s output, hence learning information of haze re-
moval. In the Equation 6, I ′ and J ′ refer to the output fea-
ture map of dehaze network encoder and teacher network
encoder respectively.

LKT = |J ′ − I ′|1 (6)

The total loss is calculated using the Equation 7.

L = 1× L1 + 0.3× Llap + 0.5× LLab + 1× LKT (7)

4.6. TJUVIPLab

TJU VIPLab team proposed a CNN-based Multi-task
Collaboration Dehazing Network (MCDNet) to directly
learn the mapping between the nonhomogeneous haze im-
age and haze-free clear image. MCDNet consists of three
sub-nets inspired by [41] and a Channel Attention-Spacial
Attention(CASA) Module inspired by [63]. The overall
structure of MCDNet is shown in Figure 9. The Simple
U-Net is used to obtain a preliminary haze-free image, the
Encode-Decode sub-Net(EDN) is used to extract features
and get basic dehazing feature maps, and the Detail Refine-
ment sub-Net(DRN) is used to get high frequency details
of the haze free image features. CASA Module is used to
enhance the usage of available information to improve the
perceptual properties of the produced image.

Figure 9: An overview of the proposed MCDNet architec-
ture.

The architecture of simple U-Net is shown in Figure 10,
as a light encoder-decoder structure. There are 6 downsam-
pling/upsampling blocks, using 4 × 4 convolution (trans-
posed convolution), with stride= 2, and suitable padding,
to finally match the dimensions of the input image.

Figure 10: Structure of Simple U-Net

DenseNet-101 pretrained on the ImageNet is the back-
bone of EDN’s encoder part. Same as [41], the decoder
is composed of five Deformable Convolution Upsampling
(DConv Up) blocks, as shown in right side of Figure 9.
The DConv Up block consists of 2 deformable convolution
blocks. The input feature is first fed into a residual-3 × 3
DConv block, then fed into a 1 × 1 DConv block, and fi-
nally go through an 2× nearest-upsampling layer to obtain
the upsampled feature. The deepest two blocks used skip
connection from the output of the third and the fourth dense-
block, respectively. Moreover, EDN uses trainable instance
normalization for skip connections.

DRN starts with two downsampled enhancing mod-
els (EM) to capture multi-scale detailed feature maps.
Then, their output is fed into three residual blocks. The
Pixel Shuffle layer implements a 2× upsampling operation,
which is used to change the feature maps fromH×W×4C
to 2H × 2W ×C, where H,W,C are the height, width and
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the number of channels of feature map. As shown in Fig-
ure 11, EM obtains 4×, 8×, 16×, 32× downsampling fea-
tures, and performs 2×, 4×, 8×, 16× upsampling respec-
tively. The feature maps are concatenated with 2× down-
sampling and fed into 3× 3 convolution layer.

Figure 11: Structure of Enhance Module

CASA Module contains four CASA-blocks, which is
shown at the bottom of Figure 9. Three Sub-Net outputs are
fed into three CASA-blocks respectively. Then, their out-
puts are concatenated and used as input of the next CASA-
block, which can further enhance useful information. The
CASA Module output adds with concatenated feature map
consisting of the output of three Sub-Nets. Finally, this fea-
ture map is fed into a 3 × 3 DConv layer. This layer uses
Tanh as activation function, which normalizes the output
in the [−1, 1] interval.

4.7. Team Inception

They present an architecture, named MPRNet, that is
based on a recent work [66]. As illustrated in Fig. 12, MPR-
Net consists of two stages to progressively restore images.
In the first stage they employ three encoder-decoder sub-
networks that independently operate on the red, green and
blue channels of the hazy input image. It is based on the
observation that each channel is affected by the haze differ-
ently. For instance, the density of haze in the blue chan-
nel is much higher than in the red channel. Therefore, the
solution proposes different parameters allocation per chan-
nel, with respect to the haze density. For the output of each
encoder-decoder subnetworks, they deployed a supervised
attention module (SAM) [66]. The schematic diagram of
SAM is shown in Figure 13.

The output features from the first stage are concatenated
and passed as input to the final stage. This stage act as a re-
finement stage and outputs the final dehazed image. To train
the proposed network, they use L1 loss at the first stage, and
the loss function stated in Equation 8 for the final stage.

Figure 12: Overall framework of MPRNet.

Lf = αL1(ŷ,y) + βLMS-SSIM(ŷ,y) + γLVGG(ŷ,y) (8)

The first term (L1 loss) and second term (multi-scale
structural similarity measure) computes differences be-
tween the network’s output and the ground truth directly at
the pixel-level. The last term of the loss function compares
the deep feature representations of the output and ground-
truth images extracted with the VGG network pre-trained on
the ImageNet dataset. In Equation 9, the formula of this loss
function is given, whereN is the number of pixels in the im-
age and φ(.) is the transformation after the conv2 layer of
the VGG net.

LV GG(ŷ,y) =
1

N
‖ φ(ŷ)− φ(y) ‖22, (9)

Figure 13: Supervised attention module (SAM).

4.8. iPAL-GridFFA

The team designed an end-to-end GAN Network for non-
homogeneous haze removal which consists of a generator
network, a group structure, and a discriminator. For the
generator architecture, they chose a 3×6 Grid network with
Feature Fusion Attention. The generator network is an en-
hanced network of GridDehazeNet [45].

The Group Structure combines 15 Basic Block structures
which conclude the Pixel attention [50] and Channel atten-
tion [29], with skip connections for each of the modules.
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Figure 14: Solution proposed by iPAL-GridFFA

Figure 15: The architecture of the group structure proposed
by iPAL-GridFFA.

For the discriminator architecture, they use a similar idea
to Patch GAN[74], using the discriminator score for the
image as the average score over the set of disjoint image
patches that can be fed to the discriminator for each train-
ing image.

Besides the adversarial loss, they use SSIM loss function
as well as Smooth L1 loss and L1 loss. Moreover, the cosine
annealing [31] mechanism is used for the adjustment of the
learning rate.

Figure 15 provides a detailed illustration of Group Struc-
ture. Local residual learning allows the region with a thin
haze to be bypassed through multiple local residual con-
nections. While Channel Attention concerns that different
channel features have different weighted information, the
Pixel Attention makes the network pay more attention to in-
formative features.

They opted for a simple network with the building block
made of a convolution layer, a Batch Normalization layers,
and using ReLU as the activation function. The network
contains three building blocks in serial, where the first two
blocks are attached to a Max Pooling operation.

4.9. VIPLab
Densenet network has a wide range of applications in

many fields due to its dense connection characteristics, and
so, this team used it as the backbone network for dehazing.
The boosting algorithm operates the refinement process on
the strengthened image, based on the previously estimated
image. The algorithm has been shown to improve the
Signal-to-Noise Ratio (SNR) under the axiom that the
denoising method obtains better results in terms of SNR on

the images of the same scene but less noise. For image de-
hazing, the Enhance strategy can be formulated similarly as:

Ĵn+1 = g
(
I + Ĵn

)
− Ĵn (10)

where Ĵndenotes the estimated image at the n-th iteration,
g() is the dehazing approach, and I + Ĵn represents the
strengthened image using the hazy input I .

Figure 16: VIPLab proposed architecture.

They show that the boosting method can facilitate image
dehazing performance in terms of Portion of Haze (PoH)
under a similar axiom as that for denoising.

Figure 17: Dense Feature Fusion

4.10. debut kele

They proposed a deep learning architecture, similar
to [47], that estimates physical parameters in the haze
model. Compared to it, they experiment with different
data augmentation strategies, a custom loss function, and
the Stochastic Weight Averaging optimization [34]. Their
network uses a shared DenseNet encoder and four parallel
distinct decoders to jointly estimate the scene information.
Moreover, the channel attention mechanism is utilized to
generate different feature maps. A novel Dilation Inception
module at the direct decoder is used to generate additional
features at densely-hazed regions using the non-local fea-
tures principle.

The minimized objective consists of a final blend of L1,
LSSIM and Lstd. is used, where Lstd. is used to suppress
extreme values throughout the image.

4.11. alibaba-cipp

They adopt the GAN framework, which is widely known
to be able to do image restoration. The generator consists of
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a sequence of two stages to progressively dehaze the input
hazy images.

In the first stage, they use a residual-in-residual dense
block (RRDB)[64] as the basic module to generate the
coarse dehazed image. The second stage, they employ
a encoder-decoder architecture to refine the coarse image.
In order to combine information from different receptive
fields, they deployed a multi-patch transformer structure be-
tween the encoder and the decoder, to guide the network to
refine the result. The proposed solution is illustrated in Fig-
ure 18.

4.12. DeepBlueAI

They used Trident Dehazing Network as the core sub-
network, and based on DMPHN, they designed a new net-
work named Cascaded Multi-Path Dehazing Network (CM-
PDN). The team used a simple but effective data augmen-
tation strategy named Hazing Reinforcement Augmenta-
tion (HRA). Compared with the traditional method, they
perform additional data augmentation on the cropped sub-
images. This method consists of randomly initializing two
fog masks with a total area of 64×64 and merging them
with the sub-images, in order to solve the problem of insuf-
ficient training for non-haze area/shallow haze area.

Figure 19 shows the effect of HRA on the dehazing re-
sults. The left and right columns are the compared results
produced before and after using HRA. HRA effectively re-
moves dense haze and maintains the original texture of the
image, making the result clearer.

4.13. Team Dou

Team Dou proposed an improvement over the work pub-
lished in [66], based on muti-scale features extraction. Prin-
ciples as attention mechanisms, residual learning, feature
fusion and hybrid dilated convolution are combined in an
architecture illustrated in Figure 20.

4.14. LDGLI

The architecture is illustrated in the Figure 21. They used
a pre-trained ResNeSt [71] model to extract the features at
five different levels, and employed the proposed NonHo-
mogeneous Dehazing Block (NHDBlock) (see Figure 22)
to remove the haze and recover the image. The 2× is an
upsampling operation which is done by a transposed convo-
lution and a nonlinear activation.

The NHDBlock, mainly consists of a sequence of four
NonHomogeneous Dehazing Units (NHDUint). Each of
the proposed NHDUnit tries to augment the input feature
I by utilizing the global feature G and local feature L, and
produces output augmented feature O. They introduce the
residual connection in NHDBlock to help preserve spatial
details.

4.15. NTUDS-LINLAB

They proposed a U-Net architecture [53] (see Figure 23)
dehazing model using multiscale dense features, based on
dense blocks [32] and residual blocks [30]. Their Encoder
module used Densenet which was pretrained on ImageNet
dataset. One important difference between their model and
U-Net is the re-designed skip connection. Aiming at uti-
lizing lower level feature maps, they used a concatenation
between the decoder feature map and the upsampled lower
dimension feature map.

4.16. VIP UNIST

They proposed an end-to-end dehazing method named
Selective Residual Learning for Multi-scale Dehazing.
Overall network architecture (see Figure 24) shows the mul-
tiscale inputs and outputs and the use of proposed selective
residual blocks.

Firstly, adopting the multi-scale architecture in the
method is an effective way to train model that can extract
both high-level and low-level features.

Secondly, the selective residual block reduces unneces-
sary artifacts of the final outputs. The selective residual
block is an operation that is similar to the residual block
in the ResNet.

However, the final output O(x) at the pixel location x is
the activated weighted sum of the input feature F (x) and
the estimated residual feature R(x), which can be denoted
as Equation 11. Since both the skip connection and the con-
volutional output are weighted, the block selectively takes
the branches. Therefore, the artifacts that are crucial to the
fidelity of the final outputs are alleviated.

O(x) = σ(αF (x) + βR(x)), (11)

4.17. SP-CET

This method includes a multi-level CNN model called
Deep Multi-patch Hierarchical Network(DMPHN) inspired
by [20] and [68]. It uses multi patch hierarchy as input and
exploits dehazing at different scales. Each level of the net-
work consists of an encoder and a decoder. The overall ar-
chitecture of the method is shown in Figure 25.

4.18. Dehaze aicte

This team proposed the GANID method, tackling the
image dehazing problem in the adversarial learning frame-
work. Deep supervision [39] in UNet++ is used for the
generator (see Figure 26), to create secondary output maps,
which allows for models to be pruned, therefore, applying
the model pruning process.

Deep supervision operates in two modes, namely the ac-
curate mode and the fast mode. In the accurate mode, the
averaged output is calculated from all output branches. In
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Figure 18: The framework proposed by Team alibaba-cipp.

Figure 19: The effect of Hazing Reinforcement Algorithm.

the fast mode, one of the output branches is selected for
the final response map. The fast mode is also known as
a pruned mode. Model pruning reduces the complexity of
the network with some modest drop inaccuracy. The accu-
rate model is used in the proposed method. Deep super-
vision means that all the responses from nodes Xk,l with

conv dilated
conv

Recursive
 Residual 

Group

Recursive
 Residual 

Group
conv

Input
Output

Figure 20: Architecture of the solution proposed by Team
Dou.

k = 0 and l = 1, 2, 3, 4 are passed through a 1× 1 convolu-
tion along with a k kernel, followed by an activation func-
tion (sigmoid). A detailed description of UNet++ is given
[75]. Patch discriminator in the Conditional GAN [33] is
used with some additional layers. Rather than using pixel-
based comparison, a patch-based comparison is made in this
model.

4.19. HZZLC

This team proposed a solution named VMPHN, using
an end-to-end Multi-patch architecture. Figure 27 depicts
the architecture of the proposed solution. The informa-
tion flow is like a ”V” shape.The level-1 patch is just an
original image that is fed to the first Encoder-Decoder and
its output is then added to the level-2 patch.The result of
level-2 is the input of the second Encoder-Decoder,and the
level-3 is the same condition.Now the top-bottom flow is
completed.As to the bottom-top flow,the third output of
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Figure 21: Architecture of the solution proposed by LDGLI
team.

Figure 22: Schematic illustration of the NHDBlock used by
LDGLI team.

Figure 23: The architecture of the model used by NTUDS-
LINLAB team.

the Encoder-Decoder is added with the input of Encoder-
Decoder,the result is then feed to the forth Encoder-Decoder
net.Finally,we get the fifth Encoder-Decoder’s output and

Figure 24: The architecture of the VIP UNIST proposed
method.

Figure 25: Architecture of the DMPHN model.

Figure 26: Generator of the GANID method.

adopt the MSE loss, perception loss and total variation loss
to get the dehazed images.

4.20. WaveFull-XM

This team combines the GCAN model [18] and the PAM
model [19] to build a network implementing residual learn-
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Figure 27: VMPHN model architecture.

Figure 28: Architecture of the MACNet model.

ing, in order to learn the features on non-homogeneous
haze. Several PAM modules are added to different layers
of the residual network, which enable the network to learn
local information from both high-level semantics and low-
level semantics. Finally, the features of different layers are
fused as the ultimate features.

4.21. SVNIT NTNU Team

The proposed MACNet consists of a multiple atten-
tion based approach, able to tune with the given non-
homogeneous haze image adaptively. The architecture of
the solution is depicted in Figure 28. In order to deal
with the non-homogeneous haze, the proposed network uses
channel attention, pixel attention and spatial attention, help-
ing the network to learn the statistical characteristics of haze
image. The L1 loss function, between the hallucinated im-
age and the ground truth haze-free image was used as the
minimized objective.

4.22. CVML

To tackle the non-homogeneous haze, they proposed a
new appraoch called Depth-in-Residual Mulit-Path CNN
for Non-Homogeneous DeHazing (i.e., DMCNN-DHaze)
and the design of the same is depicted in the Figure 29. The
proposed DMCNN-DHaze model consists of several resid-
ual groups (i.e., consisting depth-in-Residual blocks) where
multi-path connections along with attention networks are
utilized in order to remove the non-homogeneous haze and
produce plausible solutions.

4.23. BUUMASRC

Their algorithm refines the estimation of the atmospheric
ambient light and transmittance based on the original dark

Figure 29: Architecture of the CVML proposed solution.

Figure 30: Flowchart diagram of the algorithm proposed by
Team BUUMASRC

channel prior algorithm, thus get more effective estimate
values, which significantly improve the dehazing effect.
The flowchart diagram in the algorithm is represented in
Figure 30.

The algorithm makes estimations over the ambient light
and the atmospheric light using image level statistics. Those
estimations are used to compute a color layer transmittance
matrix, and then, this is used for the image dehazing proce-
dure.

5. Conclusion

The challenge registered 327 participants, and 23 teams
were ranked in the final phase. They experimented with
various architectures and proposed several novel solutions,
improving over the existing results. Designs presented in
the past years were successfully deployed, showing them as
useful building blocks, with a lot of potential for improve-
ment.

The final ranking was done with respect to the Mean
Opinion Score resulting of our user study, and the solutions
were split into three categories with respect to their percep-
tual properties. Finally, the ranking was highly influenced
by the recovered images fidelity, as this had the highest cor-
relation to the users feedback about the presented results.
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Leonardis, Radu Timofte, et al. NTIRE 2021 challenge on
high dynamic range imaging: Dataset, methods and results.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2021. 2

[50] Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and
Huizhu Jia. Ffa-net: Feature fusion attention network for sin-
gle image dehazing. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11908–11915,
2020. 3, 6, 9

[51] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang.
Single image dehazing via multi-scale convolutional neural
networks. Proc. European Conf. Computer Vision, 2016. 1

[52] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 4

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 11

[54] Sanghyun Son, Suyoung Lee, Seungjun Nah, Radu Timo-
fte, Kyoung Mu Lee, et al. NTIRE 2021 challenge on video
super-resolution. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops, 2021. 2

[55] Robby T. Tan. Visibility in bad weather from a single im-
age. In IEEE Conference on Computer Vision and Pattern
Recognition, 2008. 1

[56] J.-P. Tarel and N. Hautiere. Fast visibility restoration from a
single color or gray level image. In IEEE ICCV, 2009. 1

[57] J.-P. Tarel, N. Hautière, L. Caraffa, A. Cord, H. Halmaoui,
and D. Gruyer. Vision enhancement in homogeneous and
heterogeneous fog. IEEE Intelligent Transportation Systems
Magazine, 2012. 2

[58] A. Wang, W. Wang, J. Liu, and N. Gu. AIPNet: Image-to-
image single image dehazing with atmospheric illumination
prior. IEEE Trans. Image Proc., 2019. 1

[59] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-
celli, et al. Image quality assessment: from error visibility to
structural similarity. The IEEE Transactions on Image Pro-
cessing (TIP), 13(4):600–612, 2004. 4

[60] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-
tural similarity for image quality assessment. In The Thrity-
Seventh Asilomar Conference on Signals, Systems Comput-
ers, 2003, volume 2, pages 1398–1402 Vol.2, 2003. 6

[61] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In
So Kweon. CBAM: convolutional block attention module.
In The European Conference on Computer Vision (ECCV),
September 2018. 5

[62] Haiyan Wu, Jing Liu, Yuan Xie, Yanyun Qu, and Lizhuang
Ma. Knowledge transfer dehazing network for nonhomoge-
neous dehazing. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020. 5, 6, 7

[63] H. Wu, J. Liu, Y. Xie, Y. Qu, and L. Ma. Knowledge trans-
fer dehazing network for nonhomogeneous dehazing. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1975–1983,
2020. 8

[64] T. Xie, X. Yang, Y. Jia, C. Zhu, and X. LI. Adaptive densely
connected single image super-resolution. In 2019 IEEE/CVF
International Conference on Computer Vision Workshop (IC-
CVW), pages 3432–3440, 2019. 11

[65] Ren Yang, Radu Timofte, et al. NTIRE 2021 challenge on
quality enhancement of compressed video: Methods and re-
sults. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops, 2021. 2

[66] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling

19



Shao. Multi-stage progressive image restoration. In CVPR,
2021. 9, 11

[67] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, pages 818–833. Springer, 2014. 4

[68] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Ko-
niusz. Deep stacked hierarchical multi-patch network for im-
age deblurring. CoRR, abs/1904.03468, 2019. 11

[69] H. Zhang, V. Sindagi, and V. M. Patel. Multi-scale single im-
age dehazing using perceptual pyramid deep network. IEEE
CVPR, 2018. 1

[70] He Zhang, Vishwanath Sindagi, and Vishal M Patel. Multi-
scale single image dehazing using perceptual pyramid deep
network. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pages 902–
911, 2018. 5

[71] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi
Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R.
Manmatha, Mu Li, and Alexander Smola. Resnest: Split-
attention networks. arXiv preprint arXiv:2004.08955, 2020.
11

[72] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 4

[73] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In The European Con-
ference on Computer Vision (ECCV), September 2018. 6

[74] Yajie Zhao, Weikai Chen, Jun Xing, Xiaoming Li, Zach
Bessinger, Fuchang Liu, Wangmeng Zuo, and Ruigang
Yang. Identity preserving face completion for large ocular
region occlusion. arXiv preprint arXiv:1807.08772, 2018.
10

[75] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. Unet++: A nested u-net
architecture for medical image segmentation, 2018. 12

[76] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 4, 6

20


