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ABSTRACT
We introduce a simple but robust method to restore the visibility
of hazy images. Our non deep-learning strategy refines a sim-
plistic approximation of the airlight by taking advantage of the
O-HAZE dataset that contains also the corresponding haze-free
images. Knowing that the transmission is generally characterized
by small values in hazy scenes, based on the optical model, we
first assumes zero transmission, and approximate the airlight by
the input hazy image. Then, using hazy and corresponding haze-
free images available from the O-HAZE dataset, a second airlight
estimate can be computed by solving the optical model assuming
a simplified transmission map derived from dark channel prior.
Observing that the difference between these two airlight estimates,
primarily contains the low frequencies of the hazy image, we refine
the airlight approximation derived from a zero transmission by
reinforcing its low frequency component. We extensively tested our
approach on real world hazy images. The qualitative and quantita-
tive evaluations demonstrate that our approach yields better results
than previous physically-based image dehazing techniques, and
favorably compares with the deep learning dehazing approaches.

Index Terms— image dehazing, airlight, optical model

I. INTRODUCTION
Outdoor images are frequently altered by haze, which is a

natural phenomenon resulting from the scattering and absorption
of light by tiny particles suspended in the atmosphere. This
can selectively attenuate the light spectrum, leading to decreased
visibility, lost contrast, color artifacts and additional noise in the
images. Consequently, restoring these images is crucial in various
outdoor applications relying on visual appearance to (re-)identify
objects [1], such as visual surveillance and automated driving
assistance.

The mathematical nature of single image dehazing is ill-posed,
mainly due to the fact that the haze’s impact on each pixel varies
and relies on the distance between the camera and the scene point.
This relationship is commonly represented by the Koschmieder’s
light propagation model [2], which combines transmission and
airlight to depict how haze affects the image captured.

Over the past few years, we have observed an important progress
in the field of single image dehazing. In general existing methods
are either physically-based techniques or deep learning-based tech-
niques. The class of physically-based methods directly leverages
the Koschmieder’s optical model and depends on priors, such as
dark channel prior [3], color lines [4] and color clusters [5]. For
instance, the dark channel prior (DCP) assumes that the minimum
intensity in RGB channels should be near zero in haze-free natural
images. Various approaches have been considered to exploit DCP.
Meng et al. [6] use a regularization strategy to refine the boundaries

of the rough transmission estimated by DCP. Fattal [4] employs
color-lines within the RGB color space to develop a technique
that takes advantage of the one-dimensional structures found in
the distributions of pixels within small patches of natural images.
Berman et al. [5] extends [4] by noting that the RGB color space
can be approximated by a discrete set of color clusters.

The class of deep learning techniques builds on convolution
neural networks to learn the image prior [7], [8], [9], [10] or
to learn the direct translation from hazy to clear images [11],
[12], [13], [14]. DehazeNet, a convolutional neural network (CNN)
approach developed by Cai et al. [8], aims to eliminate haze from
images by training a model to convert hazy patches into clear
ones. The process involves three steps: feature extraction, multi-
scale mapping, and non-linear regression. To train the model, a
synthesized dehazing dataset was utilized. Ren et al. [7] employ
a coarse-scale network to estimate the transmission map, which
is then further enhanced by a fine-scale network. AOD-Net [15]
reformulates the optical model to produce the recovered images.
GridDehazeNet [11] is composed of three primary modules. The
initial module adapts the image representation to subsequent
modules. The second module facilitates an effective exchange of
information at varying scales. The final module refines the output
by decreasing the prevalence of artifacts. The method of Zhang et
al. [16] won IEEE CVPR NTIRE [17] image dehazing competition.
It involves a Perceptual Pyramid Deep Network with an encoder-
decoder architecture. The model is trained on paired data using a
mix of mean squared error and perceptual losses.

Deep learning techniques [18], [19], [20], [21] have shown
remarkable success for dehazing problem in the last years. This
was due to the introduction of several specialized image dehazing
datasets [22], [23], [24], [25], [26], [27], [28]. However, these
databases are either synthetically generated [23], [26] or have a
relatively small (e.g. tens) number of images [27], [28]. As a
result the existing deep learning dahazing models often have trouble
generalizing beyond the specific data (synthetic and realistic hazy
images) they were trained on, leading to poor performance when
tested on new real data.

In this paper we introduce a non-deep learning approach that
is guided by a refined airlight approximation. In our approach we
take advantage of the O-HAZE realistic dataset [27] (that contains
also the corresponding haze-free image) to refine a simplistic
approximation of the airlight. From our previous study [29] we
know that the transmission is generally characterized by small
values in hazy scenes, which allows to approximate the airlight by
the input hazy image. Than, using hazy and corresponding haze-free
images available from O-HAZE dataset, a second airlight estimate
can be computed by solving the optical model using a transmission
value derived from dark channel prior. Comparing these two airlight



estimates we observe that their difference primarily contains the low
frequencies of the hazy image. Hence, for images for which the
haze-free image is not available, we propose to refine the airlight
approximation derived from a zero transmission by reinforcing
its low frequency component, thereby reducing its discrepancy
with the airlight that would be computed from the haze-free
image. Our method has been extensively tested on existing image
dehazing datasets but also on real hazy images. The qualitative and
quantitative evaluation demonstrates that our approach yields better
results than the physically-based image dehazing techniques and
favorably compares with the deep learning dehazing approaches.

II. OUR DEHAZING APPROACH
According to the Koschmieder’s [2] optical-model, the presence

of atmospheric particles that absorb and scatter light along the
observer’s line of sight reduces the amount of reflected light and
impacts the quality of the perceived visual image. Mathematically,
the light intensity I of each pixel x, is expressed as:

I(x) = J (x) T (x) +A∞(x) [1− T (x)] (1)

where J represents the scene radiance or haze-free image that
needs to be estimated, T is the transmission along the line of sight,
and A∞ represents the atmospheric light (airlight). The optical
model expresses a linear relationship between observed image,
image radiance, and airlight. The first term models how the scene
radiance is reduced due to the properties of the atmosphere, while
the airlight is the primary cause of image degradation in terms of
color shifting, noise, and blur. Under homogeneous conditions, the
transmission T (x) is expressed as:

T (x) = e(−β d(x)) (2)

where β is the attenuation coefficient of the medium due to
scattering and d(x) is the distance between the observer and the
observed point.

In general, existing non-deep learning techniques estimate the
two unknown parameters: transmission T (x) and atmospheric light
A∞(x). Therefore, most solutions have to rely on prior knowledge
such as dark channel priors [3], color lines [4], color clusters [5].

However, various assumptions such as considering that A∞
(atmospheric light) is constant across the scene, have been demon-
strated to fail for more complex hazy scenes, causing in general
color shifting (see Figure 2).

To mitigate those limitations, our work takes advantage of the
O-HAZE dataset [27] to refine a simplistic non-uniform approx-
imation of the airlight. Our experiments clearly demonstrate the
significant benefit resulting from this refinement. Regarding the
transmission, our work follows previous works [3]. A reasonable
approximation for the transmission of DCP is expressed as:

T (x) = (1− min
R,G,B

(I))k (3)

where k is a positive integer parameter that compresses the values
of the transmission close to zero (here we generate the results using
k=6).

In contrast to earlier works, the airlight is computed in a two
step manner. The first step adopts the conventional observation
made in previous studies [29] that the transmission is generally
small in hazy scenes. Considering the extreme case, i.e. T (x) = 0,
results in approximating A∞ with I. This approximation is denoted

Fig. 1. Considering the hazy image (top-left), our refined airlight
estimate Ā∞ (top-right) shows a similar appearance with the
original hazy image (since we basically filter out from the hazy im-
age only few high frequencies). Using our zero-close transmission
(Eq. 3) (bottom-left) we can solve the optical model and generate
our dehazed result (bottom-right).

A∞0 in the rest of the paper. The second step is the main
contribution of our paper, and consists in refining the A∞0 so as
to improve the dehazed image. To design this refinement process,
hazy and dehazed image pairs from the O-HAZE dataset have been
considered to compute the airlight A∞ resulting from Eq. 1 when
T (x) is approximated by Eq. 3 , while I(x) and J (x) correspond
to the hazy and clean images available from the O-HAZE dataset,
respectively.

Hence, it becomes possible to compare A∞ and A∞0 for the
O-HAZE dataset pairs. As expected, this difference is very small
and contains the low frequencies of the hazy image. Since the
high frequencies of an image can be reconstructed by the sum
of all its Laplacian values [30], we can express this difference
mathematically as:

DiffA = A∞0 −
N∑
i=0

Li (4)

where Li is the i-th level of the Laplacian of the hazy image. In
order to keep the solution computational efficient we set the value
of N quite small (N=2), so basically only a few high frequencies of
the image are filtered out. As a result, we can express our refined
airlight estimate Ā∞ by reinforcing its low-pass component through
the addition of this difference. Mathematically our refined airlight
estimate is expressed as:

Ā∞ = A∞0 +DiffA (5)

Furthermore, because we have observed that the contribution of
the low frequency hazy image in the airlight is increasing with the
initial value of T , we have finally approximated the airlight using
a formula inspired from alpha blending:

Ā∞ = (1− T )αA∞0 + TαDiffA (6)

where A∞0 is computed for T = 0 and is identified with the
hazy image, T is the transmission computed with the expression
described in Eq.3, and the parameter α controls the amount of
blending (default value is α=0.5). To restore the hazy images, we
solve the optical model equation (Eq. 1) by using our final airlight
estimate, Ā∞, and the estimated transmission expressed by Eq. 3.
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Fig. 2. Qualitative comparison of dehazing methods [3], [6], [4], [5], [8], [7], [31] and our method for 5 images of the O-HAZE dataset.

He et al. Meng et al. Fattal Berman et al. Dehaze-Net Multiscale CNN PMS Net Ours
SSIM PSNR CIEDE SSIM PSNR CIEDE SSIM PSNR CIEDE SSIM PSNR CIEDE SSIM PSNR CIEDE SSIM PSNR CIEDE SSIM PSNR CIEDE SSIM PSNR CIEDE

Set 6 0.74 16.68 19.00 0.78 20.71 11.44 0.73 15.16 21.89 0.77 17.11 12.68 0.59 15.32 16.16 0.72 17.54 13.20 0.73 19.36 11.58 0.77 19.26 11.15
Set 10 0.78 16.22 15.22 0.76 15.98 16.63 0.75 16.42 17.49 0.72 14.48 17.77 0.71 15.02 16.17 0.80 16.57 13.70 0.77 16.80 12.29 0.76 18.34 12.78
Set 21 0.69 16.78 27.50 0.78 19.80 21.13 0.63 16.10 28.25 0.72 15.90 20.54 0.71 16.37 19.49 0.73 17.14 20.26 0.80 19.33 15.98 0.78 21.29 12.94
Set 30 0.75 15.71 18.85 0.74 14.68 18.59 0.72 14.68 18.46 0.81 17.48 14.55 0.77 18.57 12.70 0.82 19.72 12.66 0.78 19.94 12.17 0.88 23.02 8.15
Set 33 0.76 18.96 18.54 0.74 18.01 15.84 0.76 17.28 17.86 0.66 16.37 19.39 0.81 17.87 14.61 0.88 22.61 10.87 0.84 20.19 12.03 0.88 20.06 9.29
Average 0.74 16.59 20.75 0.75 17.44 16.97 0.71 15.64 19.85 0.75 16.61 17.09 0.67 16.21 17.35 0.77 19.07 14.67 0.81 19.05 13.47 0.81 20.27 10.56

Table I. Quantitative evaluation. We compute the SSIM, PSNR and CIEDE2000 for the entire O-HAZE dataset. Besides the average
value over the entire dataset in this table are presented also the results of the evaluated methods (from left to right [3], [6], [4], [5],
[8], [7], [31] and our method) for the 5 images of the O-HAZE dataset that are shown in Figure 2.

III. RESULTS AND DISCUSSION

We validate our approach by a comprehensive qualitative and
quantitative evaluation. We first consider the realistic dehazing
dataset O-HAZE [27] that contains 45 various outdoor scenes
with haze generated with a professional haze machine that yields
realistic hazy conditions. O-HAZE has the advantage to provide
also the haze-free (ground-truth) corresponding images that allow to
objectively evaluate the dehazing methods using traditional metrics.
Table I presents the objective evaluation of the O-HAZE dataset
based on several traditional image quality metrics (e.g. PSNR,
SSIM [32] and CIEDE2000 [33], [34]). Besides the average value
over the entire dataset, Table I also presents also the results of the
evaluated methods (from left to right [3], [6], [4], [5], [8], [7],
[31] and our method) for the 5 images of the O-HAZE dataset that
are shown in Figure 2.

Moreover, in order to have a fair comparison with deep learning
techniques, Figure 3 shows the results only for the last five images
(the other 40 sets of images have been used for training the
CNN models) of the O-HAZE, dataset, as recommended by the
image dehazing challenge [17]. Table II provides the quantitative
metrics for three deep-learning techniques [8], [31], [16] and three
non deep-learning techniques [3], [5] (and our approach) when
considering the 5 images shown in Figure 3.

Analyzing these results we can conclude that our approach
performs better than the non-deep learning techniques but also
yields comparable results with considered deep learning techniques.

Obviously, being trained on O-HAZE dataset, the method of [16]
yields the best results in terms of quantitative and qualitative
evaluation. However, our approach approach performs closely and
has the advantage of having a lower computational complexity
compared with deep learning techniques.

In our evaluation we have also considered real world hazy images
(see Figure 4). The results obtained on those images demonstrate
that, in general our approach is able to properly recover the color
and scene details. Moreover, compared to deep learning techniques,
our technique method offers good generalization capabilities, and
is able to better recover the details from distant regions (near the
horizon).

To conclude, our approach is based on the observation that the
transmission in hazy scenes is typically characterized by small
values. Taking advantage of the O-HAZE dataset that contains also
the corresponding haze-free images, we compute a refined airlight
approximation derived from a zero transmission by enhancing its
low-frequency component. As demonstrated by both qualitative and
quantitative evaluations our our approach outperforms physically-
based image dehazing methods and is comparable to deep learning-
based dehazing methods.
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Fig. 3. Comparison of the the deep-learning techniques [8], [31], [16] and non deep-learning techniques [3], [5] (and our approach) for
the 5 images of O-HAZE that have been used in the image dehazing NTIRE challenge [17].

Dehaze-Net PMS-Net PPDN He et al. Berman et al. Ours
SSIM 0.704 0.822 0.861 0.77 0.805 0.833
PSNR 17.245 19.322 24.029 16.871 17.655 21.186
CIEDE2000 15.081 13.112 7.124 18.963 14.519 9.797

Table II. Quantitative results (shown in Figure 3) for the 5 images of O-HAZE that have been used in the image dehazing NTIRE
challenge [17].

He et al. (DCP)Real hazy images Berman et al. Our resultsFattal Dehaze-Net PPDN

Fig. 4. Dehazing results obtained on real world hazy images. We compare with the methods (from left to right) of He et al. [3], Fattal [4],
Berman et al. [5], Dehaze-Net [8] and PPDN [16].
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